Faubert Lab, Université de Montréal, Montréal, Canada.
J Neural Eng. 2019 Aug 14;16(5):051001. doi: 10.1088/1741-2552/ab260c.
Electroencephalography (EEG) is a complex signal and can require several years of training, as well as advanced signal processing and feature extraction methodologies to be correctly interpreted. Recently, deep learning (DL) has shown great promise in helping make sense of EEG signals due to its capacity to learn good feature representations from raw data. Whether DL truly presents advantages as compared to more traditional EEG processing approaches, however, remains an open question.
In this work, we review 154 papers that apply DL to EEG, published between January 2010 and July 2018, and spanning different application domains such as epilepsy, sleep, brain-computer interfacing, and cognitive and affective monitoring. We extract trends and highlight interesting approaches from this large body of literature in order to inform future research and formulate recommendations.
Major databases spanning the fields of science and engineering were queried to identify relevant studies published in scientific journals, conferences, and electronic preprint repositories. Various data items were extracted for each study pertaining to (1) the data, (2) the preprocessing methodology, (3) the DL design choices, (4) the results, and (5) the reproducibility of the experiments. These items were then analyzed one by one to uncover trends.
Our analysis reveals that the amount of EEG data used across studies varies from less than ten minutes to thousands of hours, while the number of samples seen during training by a network varies from a few dozens to several millions, depending on how epochs are extracted. Interestingly, we saw that more than half the studies used publicly available data and that there has also been a clear shift from intra-subject to inter-subject approaches over the last few years. About [Formula: see text] of the studies used convolutional neural networks (CNNs), while [Formula: see text] used recurrent neural networks (RNNs), most often with a total of 3-10 layers. Moreover, almost one-half of the studies trained their models on raw or preprocessed EEG time series. Finally, the median gain in accuracy of DL approaches over traditional baselines was [Formula: see text] across all relevant studies. More importantly, however, we noticed studies often suffer from poor reproducibility: a majority of papers would be hard or impossible to reproduce given the unavailability of their data and code.
To help the community progress and share work more effectively, we provide a list of recommendations for future studies and emphasize the need for more reproducible research. We also make our summary table of DL and EEG papers available and invite authors of published work to contribute to it directly. A planned follow-up to this work will be an online public benchmarking portal listing reproducible results.
脑电图(EEG)是一种复杂的信号,需要数年的培训,以及先进的信号处理和特征提取方法才能正确解释。最近,深度学习(DL)在帮助理解 EEG 信号方面显示出巨大的潜力,因为它能够从原始数据中学习到良好的特征表示。然而,与更传统的 EEG 处理方法相比,DL 是否真的具有优势,这仍然是一个悬而未决的问题。
在这项工作中,我们回顾了 2010 年 1 月至 2018 年 7 月期间发表的 154 篇应用于 EEG 的 DL 论文,涵盖了癫痫、睡眠、脑机接口、认知和情感监测等不同的应用领域。我们从大量文献中提取趋势并突出有趣的方法,以便为未来的研究提供信息并制定建议。
查询涵盖科学和工程领域的主要数据库,以确定在科学期刊、会议和电子预印本存储库中发表的相关研究。为每项研究提取了各种数据项,涉及(1)数据、(2)预处理方法、(3)DL 设计选择、(4)结果和(5)实验的可重复性。然后逐一分析这些项目以揭示趋势。
我们的分析表明,研究中使用的 EEG 数据量从不到十分钟到数千小时不等,而网络在训练期间看到的样本数量从几十到几百万不等,具体取决于如何提取时段。有趣的是,我们发现超过一半的研究使用了公开可用的数据,并且在过去几年中,从基于个体的方法到基于个体间的方法已经发生了明显的转变。大约[公式:见文本]的研究使用卷积神经网络(CNNs),而[公式:见文本]使用递归神经网络(RNNs),通常使用 3-10 层。此外,几乎一半的研究在原始或预处理的 EEG 时间序列上训练他们的模型。最后,DL 方法相对于传统基线的准确率提高中位数为[公式:见文本]在所有相关研究中。然而,更重要的是,我们注意到研究往往难以重现:鉴于数据和代码不可用,大多数论文很难或不可能重现。
为了帮助社区取得进展并更有效地共享工作,我们为未来的研究提供了一些建议,并强调了需要更具可重复性的研究。我们还提供了一个关于 DL 和 EEG 论文的摘要表,并邀请已发表工作的作者直接参与。这项工作的后续计划将是一个在线公共基准测试门户,列出可重现的结果。