Suppr超能文献

IOTA ADNEX 模型在中国妇科肿瘤中心评估附件肿块的性能。

Performance of IOTA ADNEX model in evaluating adnexal masses in a gynecological oncology center in China.

机构信息

Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China.

Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China.

出版信息

Ultrasound Obstet Gynecol. 2019 Dec;54(6):815-822. doi: 10.1002/uog.20363. Epub 2019 Nov 11.

Abstract

OBJECTIVE

To evaluate the diagnostic accuracy of the International Ovarian Tumor Analysis (IOTA) Assessment of Different NEoplasias in the adneXa (ADNEX) model in the preoperative diagnosis of adnexal masses using data from a gynecological oncology center in China.

METHODS

This was a single-center, retrospective diagnostic accuracy study based on ultrasound data collected prospectively, between May and December 2017, from 278 patients with at least one adnexal (ovarian, paraovarian or tubal) mass. Clinical and pathologic information, serum CA 125 level and ultrasonographic findings were collected. All patients underwent surgery and the histopathological diagnosis was used as reference standard. The final diagnosis was classified into five tumor types according to the ADNEX model: benign ovarian tumor, borderline ovarian tumor (BOT), Stage-I ovarian cancer (OC), Stages-II-IV OC and ovarian metastasis. Receiver-operating characteristics (ROC) curve analysis was used to evaluate the diagnostic accuracy of the ADNEX model, with and without inclusion of CA 125 level in the model.

RESULTS

Of the 278 women included, 203 (73.0%) had a benign ovarian tumor and 75 (27.0%) had a malignant ovarian tumor, including 18 (6.5%) with BOT, 17 (6.1%) with Stage-I OC, 32 (11.5%) with Stages-II-IV OC and eight (2.9%) with ovarian metastasis. The performance of the IOTA ADNEX model was good for discriminating between benign and malignant tumors, with an area under the ROC curve (AUC) of 0.94 (95% CI, 0.91-0.97) when CA 125 was included in the model and AUC of 0.93 (95% CI, 0.90-0.96) without CA 125. The AUC values of the model including CA 125 ranged between 0.61 and 0.99 for distinguishing between the different types of tumor, and it showed excellent performance in discriminating between a benign ovarian tumor and Stages-II-IV OC, with an AUC of 0.99 (95% CI, 0.97-1.00). The performance of the model was less effective at distinguishing between BOT and Stage-I OC and between Stages-II-IV OC and ovarian metastasis, with AUC values of 0.61 (95% CI, 0.43-0.77) and 0.78 (95% CI, 0.62-0.90), respectively. Although inclusion of CA 125 did not alter the performance of the ADNEX model in discriminating between benign and malignant lesions (AUC of 0.94 and 0.93 with and without CA 125 level, respectively; P = 0.54), the inclusion of CA 125 in the model improved its performance in discriminating between Stage-I OC and Stages-II-IV OC (AUC increased from 0.81 to 0.92; P = 0.04) and between Stages-II-IV OC and metastatic cancer (AUC increased from 0.58 to 0.78; P = 0.01).

CONCLUSIONS

The IOTA ADNEX model showed good to excellent performance in distinguishing between benign and malignant adnexal masses and between the different types of ovarian tumor in a Chinese setting. Based on our findings, the ADNEX model has high value in clinical practice and can aid in the preoperative diagnosis of patients with an adnexal mass. Copyright © 2019 ISUOG. Published by John Wiley & Sons Ltd.

摘要

目的

利用中国一家妇科肿瘤中心的数据,评估国际卵巢肿瘤分析(IOTA)在附件肿块术前诊断中的不同新生物评估(ADNEX)模型的诊断准确性。

方法

这是一项单中心、回顾性诊断准确性研究,基于 2017 年 5 月至 12 月前瞻性收集的超声数据,纳入了至少有一个附件(卵巢、卵巢旁或输卵管)肿块的 278 例患者。收集了临床和病理信息、血清 CA125 水平和超声表现。所有患者均接受手术,组织病理学诊断为参考标准。最终诊断根据 ADNEX 模型分为五类肿瘤类型:良性卵巢肿瘤、交界性卵巢肿瘤(BOT)、Ⅰ期卵巢癌(OC)、Ⅱ-Ⅳ期 OC 和卵巢转移。采用受试者工作特征(ROC)曲线分析评估 ADNEX 模型的诊断准确性,模型中包含和不包含 CA125 水平。

结果

在纳入的 278 名女性中,203 名(73.0%)患有良性卵巢肿瘤,75 名(27.0%)患有恶性卵巢肿瘤,包括 18 名(6.5%)交界性卵巢肿瘤、17 名(6.1%)Ⅰ期 OC、32 名(11.5%)Ⅱ-Ⅳ期 OC 和 8 名(2.9%)卵巢转移。当模型中包含 CA125 时,IOTA ADNEX 模型在区分良性和恶性肿瘤方面表现良好,ROC 曲线下面积(AUC)为 0.94(95%CI,0.91-0.97),不包含 CA125 时 AUC 为 0.93(95%CI,0.90-0.96)。包含 CA125 的模型用于区分不同类型肿瘤的 AUC 值在 0.61 到 0.99 之间,在区分良性卵巢肿瘤和Ⅱ-Ⅳ期 OC 方面表现出优异的性能,AUC 为 0.99(95%CI,0.97-1.00)。模型在区分 BOT 和Ⅰ期 OC 以及区分Ⅱ-Ⅳ期 OC 和卵巢转移方面的性能较差,AUC 值分别为 0.61(95%CI,0.43-0.77)和 0.78(95%CI,0.62-0.90)。虽然包含 CA125 并未改变 ADNEX 模型在区分良性和恶性病变方面的性能(包含和不包含 CA125 水平时的 AUC 分别为 0.94 和 0.93;P=0.54),但包含 CA125 可提高模型在区分Ⅰ期 OC 和Ⅱ-Ⅳ期 OC(AUC 从 0.81 增加到 0.92;P=0.04)和区分Ⅱ-Ⅳ期 OC 和转移性癌症(AUC 从 0.58 增加到 0.78;P=0.01)方面的性能。

结论

在中国人中,IOTA ADNEX 模型在区分良性和恶性附件肿块以及不同类型卵巢肿瘤方面表现出良好至优秀的性能。基于我们的研究结果,ADNEX 模型在临床实践中有很高的价值,可辅助附件肿块患者的术前诊断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验