Suppr超能文献

生物炭-FeO 纳米复合材料在水饱和自然土壤中促进镉的迁移。

Facilitated transport of cadmium by biochar-FeO nanocomposites in water-saturated natural soils.

机构信息

School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

National Research Council Resident Research Associate, United States Environmental Protection Agency, Ada, OK 74820, USA.

出版信息

Sci Total Environ. 2019 Sep 20;684:265-275. doi: 10.1016/j.scitotenv.2019.05.326. Epub 2019 May 22.

Abstract

Herein we explored the co-transport behaviors of cadmium (Cd) with biochar-FeO nanocomposites (BFNCs) (and biochar-alone for comparison) in water-saturated natural soil (paddy soil and red soil) packed columns. The BFNCs promoted the transport of Cd (Cd mass recovery = 2.71-10.5%) by 2.5-times in soils, compared to the biochar-alone (Cd mass recovery = 1.28-4.07%). Greater interplays via electrostatic attraction, complexation with hydroxyls, and π-π interaction with the aromatic complexes altogether contributed to the higher adsorption capacity and transport potential towards Cd by the BFNCs (vs. biochar-alone). The BFNCs greatly increased (27.1-95.5 times) Cd transport in soils mainly through BFNC-Cd complexes, compared to the negligible transport of Cd in soils without presence of BFNCs. Higher mobility of BFNCs and BFNC-Cd complex occurred in the red soil than in the paddy soil due to the lower contents of Fe/Al oxides in the red soil. Greater enhancement effect (~2.5 times) on Cd was observed by BFNCs derived from wheat straw than wood chip, due to the stronger sorption ability of wheat straw biochar towards Cd, likely stemming from more mineral composition such as CaCO. Our findings suggest that the potential co-transport risks should not be simply ignored particularly when the next-generation of multifunctional biochar‑iron oxide nanocomposites are employed for in-situ remediation of soils contaminated with organic/inorganic contaminants like Cd.

摘要

在此,我们探索了在水饱和的天然土壤(稻田土和红壤)填充柱中,生物炭- FeO 纳米复合材料(BFNCs)(与单独的生物炭进行比较)与镉(Cd)的共迁移行为。与单独的生物炭(Cd 质量回收率为 1.28-4.07%)相比,BFNCs 促进了土壤中 Cd 的迁移(Cd 质量回收率为 2.71-10.5%)。通过静电吸引、与羟基络合以及与芳香族络合物的π-π相互作用的更大相互作用,共同导致 BFNCs 对 Cd 的吸附能力和迁移潜力更高(与单独的生物炭相比)。与不存在 BFNCs 的土壤中 Cd 的可忽略不计的迁移相比,BFNCs 大大增加了(27.1-95.5 倍)Cd 在土壤中的迁移。由于红壤中 Fe/Al 氧化物的含量较低,BFNCs 和 BFNC-Cd 复合物在红壤中比在稻田土中更容易迁移和迁移。与源自木屑的 BFNCs 相比,源自小麦秸秆的 BFNCs 对 Cd 的增强效果更大(约 2.5 倍),这可能是由于小麦秸秆生物炭对 Cd 的吸附能力更强,可能源于更多的矿物成分,如 CaCO。我们的研究结果表明,当新一代多功能生物炭-氧化铁纳米复合材料被用于原位修复 Cd 等有机/无机污染物污染的土壤时,不应简单地忽略其潜在的共迁移风险。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验