Suppr超能文献

基于 BWM 和 Group-VIKOR 的急性白血病自动检测与分类多类基准框架。

Multiclass Benchmarking Framework for Automated Acute Leukaemia Detection and Classification Based on BWM and Group-VIKOR.

机构信息

Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia.

Department of Management Information System, College of Administration and Economic, University of Mosul, Mosul, Iraq.

出版信息

J Med Syst. 2019 Jun 1;43(7):212. doi: 10.1007/s10916-019-1338-x.

Abstract

This paper aims to assist the administration departments of medical organisations in making the right decision on selecting a suitable multiclass classification model for acute leukaemia. In this paper, we proposed a framework that will aid these departments in evaluating, benchmarking and ranking available multiclass classification models for the selection of the best one. Medical organisations have continuously faced evaluation and benchmarking challenges in such endeavour, especially when no single model is superior. Moreover, the improper selection of multiclass classification for acute leukaemia model may be costly for medical organisations. For example, when a patient dies, one such organisation will be legally or financially sued for incidents in which the model fails to fulfil its desired outcome. With regard to evaluation and benchmarking, multiclass classification models are challenging processes due to multiple evaluation and conflicting criteria. This study structured a decision matrix (DM) based on the crossover of 2 groups of multi-evaluation criteria and 22 multiclass classification models. The matrix was then evaluated with datasets comprising 72 samples of acute leukaemia, which include 5327 gens. Subsequently, multi-criteria decision-making (MCDM) techniques are used in the benchmarking and ranking of multiclass classification models. The MCDM used techniques that include the integrated BWM and VIKOR. BWM has been applied for the weight calculations of evaluation criteria, whereas VIKOR has been used to benchmark and rank classification models. VIKOR has also been employed in two decision-making contexts: individual and group decision making and internal and external group aggregation. Results showed the following: (1) the integration of BWM and VIKOR is effective at solving the benchmarking/selection problems of multiclass classification models. (2) The ranks of classification models obtained from internal and external VIKOR group decision making were almost the same, and the best multiclass classification model based on the two was 'Bayes. Naive Byes Updateable' and the worst one was 'Trees.LMT'. (3) Among the scores of groups in the objective validation, significant differences were identified, which indicated that the ranking results of internal and external VIKOR group decision making were valid.

摘要

本文旨在协助医疗机构的管理部门做出正确决策,选择适合急性白血病的多类分类模型。本文提出了一个框架,帮助这些部门评估、基准测试和对多类分类模型进行排名,以选择最佳模型。医疗机构在这方面一直面临着评估和基准测试的挑战,尤其是当没有一个模型具有优势时。此外,选择不当的急性白血病多类分类模型可能会给医疗机构带来高昂的代价。例如,当患者死亡时,由于模型未能达到预期结果,这样的机构可能会面临法律或财务诉讼。在评估和基准测试方面,多类分类模型是一个具有挑战性的过程,因为涉及多个评估标准和相互冲突的标准。本研究基于两组多评估标准和 22 个多类分类模型的交叉构建了一个决策矩阵(DM)。然后,使用包含 72 个急性白血病样本和 5327 个基因的数据集对矩阵进行评估。随后,使用多准则决策分析(MCDM)技术对多类分类模型进行基准测试和排名。MCDM 使用的技术包括集成的 BWM 和 VIKOR。BWM 用于计算评估标准的权重,而 VIKOR 用于基准测试和排名分类模型。VIKOR 还用于两种决策情境:个体和群体决策以及内部和外部群体聚合。结果表明:(1)BWM 和 VIKOR 的集成有效地解决了多类分类模型的基准测试/选择问题。(2)内部和外部 VIKOR 群体决策得到的分类模型排名几乎相同,基于这两种方法的最佳多类分类模型是“贝叶斯。天真贝叶斯可更新”,最差的是“树。LMT”。(3)在客观验证的群体得分中,发现了显著差异,表明内部和外部 VIKOR 群体决策的排名结果是有效的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验