Suppr超能文献

基于层次分析法-群组TOPSIS和匹配组件的跨集中式/分布式远程医疗医院救治新冠肺炎患者的康复血浆输注智能框架

Convalescent-plasma-transfusion intelligent framework for rescuing COVID-19 patients across centralised/decentralised telemedicine hospitals based on AHP-group TOPSIS and matching component.

作者信息

Mohammed Thura J, Albahri A S, Zaidan A A, Albahri O S, Al-Obaidi Jameel R, Zaidan B B, Larbani Moussa, Mohammed R T, Hadi Suha M

机构信息

Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Malaysia.

Informatics Institute for Postgraduate Studies (IIPS), Iraqi Commission for Computers and Informatics (ICCI), Baghdad, Iraq.

出版信息

Appl Intell (Dordr). 2021;51(5):2956-2987. doi: 10.1007/s10489-020-02169-2. Epub 2021 Jan 22.

Abstract

As coronavirus disease 2019 (COVID-19) spreads across the world, the transfusion of efficient convalescent plasma (CP) to the most critical patients can be the primary approach to preventing the virus spread and treating the disease, and this strategy is considered as an intelligent computing concern. In providing an automated intelligent computing solution to select the appropriate CP for the most critical patients with COVID-19, two challenges aspects are bound to be faced: (1) distributed hospital management aspects (including scalability and management issues for prioritising COVID-19 patients and donors simultaneously), and (2) technical aspects (including the lack of COVID-19 dataset availability of patients and donors and an accurate matching process amongst them considering all blood types). Based on previous reports, no study has provided a solution for CP-transfusion-rescue intelligent framework during this pandemic that has addressed said challenges and issues. This study aimed to propose a novel CP-transfusion intelligent framework for rescuing COVID-19 patients across centralised/decentralised telemedicine hospitals based on the matching component process to provide an efficient CP from eligible donors to the most critical patients using multicriteria decision-making (MCDM) methods. A dataset, including COVID-19 patients/donors that have met the important criteria in the virology field, must be augmented to improve the developed framework. Four consecutive phases conclude the methodology. In the first phase, a new COVID-19 dataset is generated on the basis of medical-reference ranges by specialised experts in the virology field. The simulation data are classified into 80 patients and 80 donors on the basis of the five biomarker criteria with four blood types (i.e., A, B, AB, and O) and produced for COVID-19 case study. In the second phase, the identification scenario of patient/donor distributions across four centralised/decentralised telemedicine hospitals is identified 'as a proof of concept'. In the third phase, three stages are conducted to develop a CP-transfusion-rescue framework. In the first stage, two decision matrices are adopted and developed on the basis of the five 'serological/protein biomarker' criteria for the prioritisation of patient/donor lists. In the second stage, MCDM techniques are analysed to adopt individual and group decision making based on integrated AHP-TOPSIS as suitable methods. In the third stage, the intelligent matching components amongst patients/donors are developed on the basis of four distinct rules. In the final phase, the guideline of the objective validation steps is reported. The intelligent framework implies the benefits and strength weights of biomarker criteria to the priority configuration results and can obtain efficient CPs for the most critical patients. The execution of matching components possesses the scalability and balancing presentation within centralised/decentralised hospitals. The objective validation results indicate that the ranking is valid.

摘要

随着2019冠状病毒病(COVID-19)在全球蔓延,向重症患者输注有效的康复期血浆(CP)可能是预防病毒传播和治疗该疾病的主要方法,并且这一策略被视为一个智能计算问题。在为COVID-19重症患者提供自动化智能计算解决方案以选择合适的CP时,必然会面临两个具有挑战性的方面:(1)分布式医院管理方面(包括同时对COVID-19患者和献血者进行优先级排序的可扩展性和管理问题),以及(2)技术方面(包括缺乏患者和献血者的COVID-19数据集,以及在考虑所有血型的情况下他们之间的准确匹配过程)。根据以往的报告,在此次疫情期间,没有研究为解决上述挑战和问题的CP输血救援智能框架提供解决方案。本研究旨在基于匹配组件过程,提出一种新颖的CP输血智能框架,用于在集中式/分布式远程医疗医院救治COVID-19患者,使用多准则决策(MCDM)方法从合格献血者向重症患者提供有效的CP。必须扩充一个数据集,其中包括在病毒学领域符合重要标准的COVID-19患者/献血者,以改进所开发的框架。该方法包括四个连续阶段。在第一阶段,病毒学领域的专家根据医学参考范围生成一个新的COVID-19数据集。根据五个生物标志物标准以及四种血型(即A、B、AB和O),将模拟数据分为80名患者和80名献血者,并用于COVID-19案例研究。在第二阶段,确定了四个集中式/分布式远程医疗医院中患者/献血者分布的识别场景,“作为概念验证”。在第三阶段,分三个阶段开发CP输血救援框架。在第一阶段,基于五个“血清学/蛋白质生物标志物”标准采用并开发了两个决策矩阵,用于对患者/献血者名单进行优先级排序。在第二阶段,分析MCDM技术,采用基于集成层次分析法-理想解排序法(AHP-TOPSIS)的个人和群体决策作为合适的方法。在第三阶段,根据四条不同的规则开发患者/献血者之间的智能匹配组件。在最后阶段,报告了客观验证步骤的指南。该智能框架将生物标志物标准的益处和强度权重应用于优先级配置结果,并可为重症患者获得有效的CP。匹配组件的执行在集中式/分布式医院内具有可扩展性和平衡表现。客观验证结果表明该排名是有效的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88f8/7820530/535b03f88276/10489_2020_2169_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验