Suppr超能文献

基于结构连通性的阿尔茨海默病中tau蛋白聚集的纵向模型。

A longitudinal model for tau aggregation in Alzheimer's disease based on structural connectivity.

作者信息

Yang Fan, Roy Chowdhury Samadrita, Jacobs Heidi I L, Johnson Keith A, Dutta Joyita

机构信息

Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA, USA.

Massachusetts General Hospital & Harvard Medical School, Boston, MA, USA

出版信息

Inf Process Med Imaging. 2019;11492:384-393. doi: 10.1007/978-3-030-20351-1_29. Epub 2019 May 22.

Abstract

Tau tangles are a pathological hallmark of Alzheimer?s disease (AD) with strong correlations existing between tau aggregation and cognitive decline. Studies in mouse models have shown that the characteristic patterns of tau spatial spread associated with AD progression are determined by neural connectivity rather than physical proximity between different brain regions. We present here a network diffusion model for tau aggregation based on longitudinal tau measures from positron emission tomography (PET) and structural connectivity graphs from diffusion tensor imaging (DTI). White matter fiber bundles reconstructed via tractography from the DTI data were used to compute normalized graph Laplacians which served as graph diffusion kernels for tau spread. By linearizing this model and using sparse source localization, we were able to identify distinct patterns of propagative and generative buildup of tau at a population level. A gradient descent approach was used to solve the sparsity-constrained optimization problem. Model fitting was performed on subjects from the Harvard Aging Brain Study cohort. The fitted model parameters include a scalar factor controlling the network-based tau spread and a network-independent seed vector representing seeding in different regions-of-interest. This parametric model was validated on an independent group of subjects from the same cohort. We were able to predict with reasonably high accuracy the tau buildup at a future time-point. The network diffusion model, therefore, successfully identifies two distinct mechanisms for tau buildup in the aging brain and offers a macroscopic perspective on tau spread.

摘要

tau缠结是阿尔茨海默病(AD)的一个病理标志,tau聚集与认知衰退之间存在着很强的相关性。对小鼠模型的研究表明,与AD进展相关的tau空间扩散特征模式是由神经连接性决定的,而非不同脑区之间的物理距离。我们在此提出一种基于正电子发射断层扫描(PET)的纵向tau测量值和扩散张量成像(DTI)的结构连接图的tau聚集网络扩散模型。通过对DTI数据进行纤维束成像重建的白质纤维束被用于计算归一化图拉普拉斯算子,其作为tau扩散的图扩散核。通过线性化该模型并使用稀疏源定位,我们能够在群体水平上识别tau传播性和生成性积累的不同模式。采用梯度下降法来解决稀疏约束优化问题。对来自哈佛衰老大脑研究队列的受试者进行模型拟合。拟合的模型参数包括一个控制基于网络的tau扩散的标量因子和一个代表不同感兴趣区域中种子点的与网络无关的种子向量。该参数模型在来自同一队列的独立受试者组上得到验证。我们能够以相当高的准确率预测未来某个时间点的tau积累情况。因此,该网络扩散模型成功识别了衰老大脑中tau积累的两种不同机制,并为tau扩散提供了一个宏观视角。

相似文献

1
A longitudinal model for tau aggregation in Alzheimer's disease based on structural connectivity.
Inf Process Med Imaging. 2019;11492:384-393. doi: 10.1007/978-3-030-20351-1_29. Epub 2019 May 22.
2
A physics-informed geometric learning model for pathological tau spread in Alzheimer's disease.
Med Image Comput Comput Assist Interv. 2020 Oct;12267:418-427. doi: 10.1007/978-3-030-59728-3_41. Epub 2020 Sep 29.
3
Longitudinal predictive modeling of tau progression along the structural connectome.
Neuroimage. 2021 Aug 15;237:118126. doi: 10.1016/j.neuroimage.2021.118126. Epub 2021 May 4.
4
Combined Model of Aggregation and Network Diffusion Recapitulates Alzheimer's Regional Tau-Positron Emission Tomography.
Brain Connect. 2021 Oct;11(8):624-638. doi: 10.1089/brain.2020.0841. Epub 2021 Jul 16.
5
Multi-resolution statistical analysis of brain connectivity graphs in preclinical Alzheimer's disease.
Neuroimage. 2015 Sep;118:103-17. doi: 10.1016/j.neuroimage.2015.05.050. Epub 2015 May 27.
6
A novel approach to brain connectivity reveals early structural changes in Alzheimer's disease.
Physiol Meas. 2018 Jul 23;39(7):074005. doi: 10.1088/1361-6579/aacf1f.
7
Individual classification of Alzheimer's disease with diffusion magnetic resonance imaging.
Neuroimage. 2017 May 15;152:476-481. doi: 10.1016/j.neuroimage.2017.03.025. Epub 2017 Mar 16.
8
Neural substrates of cognitive reserve in Alzheimer's disease spectrum and normal aging.
Neuroimage. 2019 Feb 1;186:690-702. doi: 10.1016/j.neuroimage.2018.11.053. Epub 2018 Nov 29.
9
Altered whole-brain white matter networks in preclinical Alzheimer's disease.
Neuroimage Clin. 2015 Jun 30;8:660-6. doi: 10.1016/j.nicl.2015.06.007. eCollection 2015.
10
Patterns of brain structural connectivity differentiate normal weight from overweight subjects.
Neuroimage Clin. 2015 Jan 13;7:506-17. doi: 10.1016/j.nicl.2015.01.005. eCollection 2015.

引用本文的文献

1
Research models to study lewy body dementia.
Mol Neurodegener. 2025 Apr 23;20(1):46. doi: 10.1186/s13024-025-00837-w.
2
Connectome-based biophysical models of pathological protein spreading in neurodegenerative diseases.
PLoS Comput Biol. 2025 Jan 21;21(1):e1012743. doi: 10.1371/journal.pcbi.1012743. eCollection 2025 Jan.
3
Contributions of connectional pathways to shaping Alzheimer's disease pathologies.
Brain Commun. 2025 Jan 6;7(1):fcae459. doi: 10.1093/braincomms/fcae459. eCollection 2025.
6
Longitudinal predictive modeling of tau progression along the structural connectome.
Neuroimage. 2021 Aug 15;237:118126. doi: 10.1016/j.neuroimage.2021.118126. Epub 2021 May 4.
7
Graph Models of Pathology Spread in Alzheimer's Disease: An Alternative to Conventional Graph Theoretic Analysis.
Brain Connect. 2021 Dec;11(10):799-814. doi: 10.1089/brain.2020.0905. Epub 2021 May 25.
9
A physics-informed geometric learning model for pathological tau spread in Alzheimer's disease.
Med Image Comput Comput Assist Interv. 2020 Oct;12267:418-427. doi: 10.1007/978-3-030-59728-3_41. Epub 2020 Sep 29.

本文引用的文献

2
Localizing Sources of Brain Disease Progression with Network Diffusion Model.
IEEE J Sel Top Signal Process. 2016 Oct;10(7):1214-1225. doi: 10.1109/JSTSP.2016.2601695. Epub 2016 Aug 19.
3
Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer's disease.
Brain. 2016 May;139(Pt 5):1551-67. doi: 10.1093/brain/aww027. Epub 2016 Mar 8.
5
Tau positron emission tomographic imaging in aging and early Alzheimer disease.
Ann Neurol. 2016 Jan;79(1):110-9. doi: 10.1002/ana.24546. Epub 2015 Dec 15.
6
An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging.
Neuroimage. 2016 Jan 15;125:1063-1078. doi: 10.1016/j.neuroimage.2015.10.019. Epub 2015 Oct 20.
7
Harvard Aging Brain Study: Dataset and accessibility.
Neuroimage. 2017 Jan;144(Pt B):255-258. doi: 10.1016/j.neuroimage.2015.03.069. Epub 2015 Apr 3.
8
Network Diffusion Model of Progression Predicts Longitudinal Patterns of Atrophy and Metabolism in Alzheimer's Disease.
Cell Rep. 2015 Jan 20;10(3):359-369. doi: 10.1016/j.celrep.2014.12.034. Epub 2015 Jan 15.
9
Proteopathic tau seeding predicts tauopathy in vivo.
Proc Natl Acad Sci U S A. 2014 Oct 14;111(41):E4376-85. doi: 10.1073/pnas.1411649111. Epub 2014 Sep 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验