Suppr超能文献

一种用于阿尔茨海默病中病理性tau蛋白扩散的物理信息几何学习模型。

A physics-informed geometric learning model for pathological tau spread in Alzheimer's disease.

作者信息

Song Tzu-An, Chowdhury Samadrita Roy, Yang Fan, Jacobs Heidi I L, Sepulcre Jorge, Wedeen Van J, Johnson Keith A, Dutta Joyita

机构信息

University of Massachusetts Lowell, Lowell, MA, USA.

Massachusetts General Hospital & Harvard Medical School, Boston, MA, USA.

出版信息

Med Image Comput Comput Assist Interv. 2020 Oct;12267:418-427. doi: 10.1007/978-3-030-59728-3_41. Epub 2020 Sep 29.

Abstract

Tau tangles are a pathophysiological hallmark of Alzheimer's disease (AD) and exhibit a stereotypical pattern of spatiotemporal spread which has strong links to disease progression and cognitive decline. Preclinical evidence suggests that tau spread depends on neuronal connectivity rather than physical proximity between different brain regions. Here, we present a novel physics-informed geometric learning model for predicting tau buildup and spread that learns patterns directly from longitudinal tau imaging data while receiving guidance from governing physical principles. Implemented as a graph neural network with physics-based regularization in latent space, the model enables effective training with smaller data sizes. For training and validation of the model, we used longitudinal tau measures from positron emission tomography (PET) and structural connectivity graphs from diffusion tensor imaging (DTI) from the Harvard Aging Brain Study. The model led to higher peak signal-to-noise ratio and lower mean squared error levels than both an unregularized graph neural network and a differential equation solver. The method was validated using both two-timepoint and three-timepoint tau PET measures. The effectiveness of the approach was further confirmed by a cross-validation study.

摘要

tau缠结是阿尔茨海默病(AD)的病理生理标志,呈现出一种刻板的时空传播模式,与疾病进展和认知衰退密切相关。临床前证据表明,tau传播取决于神经元连接性,而非不同脑区之间的物理距离。在此,我们提出一种新的基于物理知识的几何学习模型,用于预测tau蛋白的积累和传播,该模型可直接从纵向tau成像数据中学习模式,同时接受物理原理的指导。该模型以潜在空间中具有基于物理正则化的图神经网络形式实现,能够以较小的数据量进行有效训练。为了对模型进行训练和验证,我们使用了来自哈佛衰老大脑研究的正电子发射断层扫描(PET)的纵向tau测量数据和扩散张量成像(DTI)的结构连接图。与未正则化的图神经网络和微分方程求解器相比,该模型具有更高的峰值信噪比和更低的均方误差水平。该方法使用双时间点和三时间点tau PET测量数据进行了验证。交叉验证研究进一步证实了该方法的有效性。

相似文献

1
A physics-informed geometric learning model for pathological tau spread in Alzheimer's disease.
Med Image Comput Comput Assist Interv. 2020 Oct;12267:418-427. doi: 10.1007/978-3-030-59728-3_41. Epub 2020 Sep 29.
2
A longitudinal model for tau aggregation in Alzheimer's disease based on structural connectivity.
Inf Process Med Imaging. 2019;11492:384-393. doi: 10.1007/978-3-030-20351-1_29. Epub 2019 May 22.
3
Longitudinal predictive modeling of tau progression along the structural connectome.
Neuroimage. 2021 Aug 15;237:118126. doi: 10.1016/j.neuroimage.2021.118126. Epub 2021 May 4.
4
Combined Model of Aggregation and Network Diffusion Recapitulates Alzheimer's Regional Tau-Positron Emission Tomography.
Brain Connect. 2021 Oct;11(8):624-638. doi: 10.1089/brain.2020.0841. Epub 2021 Jul 16.
5
TauFlowNet: Revealing latent propagation mechanism of tau aggregates using deep neural transport equations.
Med Image Anal. 2024 Jul;95:103210. doi: 10.1016/j.media.2024.103210. Epub 2024 May 17.
6
Tau Accumulation and Network Breakdown in Alzheimer's Disease.
Adv Exp Med Biol. 2019;1184:231-240. doi: 10.1007/978-981-32-9358-8_19.
7
Inferior temporal tau is associated with accelerated prospective cortical thinning in clinically normal older adults.
Neuroimage. 2020 Oct 15;220:116991. doi: 10.1016/j.neuroimage.2020.116991. Epub 2020 Jun 5.
10
Network Diffusion Modeling Explains Longitudinal Tau PET Data.
Front Neurosci. 2020 Dec 23;14:566876. doi: 10.3389/fnins.2020.566876. eCollection 2020.

引用本文的文献

1
Graph Models of Pathology Spread in Alzheimer's Disease: An Alternative to Conventional Graph Theoretic Analysis.
Brain Connect. 2021 Dec;11(10):799-814. doi: 10.1089/brain.2020.0905. Epub 2021 May 25.

本文引用的文献

1
Spread of pathological tau proteins through communicating neurons in human Alzheimer's disease.
Nat Commun. 2020 May 26;11(1):2612. doi: 10.1038/s41467-020-15701-2.
2
Boltzmann generators: Sampling equilibrium states of many-body systems with deep learning.
Science. 2019 Sep 6;365(6457). doi: 10.1126/science.aaw1147.
3
A longitudinal model for tau aggregation in Alzheimer's disease based on structural connectivity.
Inf Process Med Imaging. 2019;11492:384-393. doi: 10.1007/978-3-030-20351-1_29. Epub 2019 May 22.
4
Longitudinal tau PET in ageing and Alzheimer's disease.
Brain. 2018 May 1;141(5):1517-1528. doi: 10.1093/brain/awy059.
5
A method for inferring regional origins of neurodegeneration.
Brain. 2018 Mar 1;141(3):863-876. doi: 10.1093/brain/awx371.
6
Localizing Sources of Brain Disease Progression with Network Diffusion Model.
IEEE J Sel Top Signal Process. 2016 Oct;10(7):1214-1225. doi: 10.1109/JSTSP.2016.2601695. Epub 2016 Aug 19.
7
Tau positron emission tomographic imaging in aging and early Alzheimer disease.
Ann Neurol. 2016 Jan;79(1):110-9. doi: 10.1002/ana.24546. Epub 2015 Dec 15.
8
Harvard Aging Brain Study: Dataset and accessibility.
Neuroimage. 2017 Jan;144(Pt B):255-258. doi: 10.1016/j.neuroimage.2015.03.069. Epub 2015 Apr 3.
9
Alzheimer disease: a tale of two prions.
Prion. 2013 Jan-Feb;7(1):14-9. doi: 10.4161/pri.22118. Epub 2012 Sep 10.
10
A network diffusion model of disease progression in dementia.
Neuron. 2012 Mar 22;73(6):1204-15. doi: 10.1016/j.neuron.2011.12.040. Epub 2012 Mar 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验