Suppr超能文献

一种用于阿尔茨海默病中病理性tau蛋白扩散的物理信息几何学习模型。

A physics-informed geometric learning model for pathological tau spread in Alzheimer's disease.

作者信息

Song Tzu-An, Chowdhury Samadrita Roy, Yang Fan, Jacobs Heidi I L, Sepulcre Jorge, Wedeen Van J, Johnson Keith A, Dutta Joyita

机构信息

University of Massachusetts Lowell, Lowell, MA, USA.

Massachusetts General Hospital & Harvard Medical School, Boston, MA, USA.

出版信息

Med Image Comput Comput Assist Interv. 2020 Oct;12267:418-427. doi: 10.1007/978-3-030-59728-3_41. Epub 2020 Sep 29.

Abstract

Tau tangles are a pathophysiological hallmark of Alzheimer's disease (AD) and exhibit a stereotypical pattern of spatiotemporal spread which has strong links to disease progression and cognitive decline. Preclinical evidence suggests that tau spread depends on neuronal connectivity rather than physical proximity between different brain regions. Here, we present a novel physics-informed geometric learning model for predicting tau buildup and spread that learns patterns directly from longitudinal tau imaging data while receiving guidance from governing physical principles. Implemented as a graph neural network with physics-based regularization in latent space, the model enables effective training with smaller data sizes. For training and validation of the model, we used longitudinal tau measures from positron emission tomography (PET) and structural connectivity graphs from diffusion tensor imaging (DTI) from the Harvard Aging Brain Study. The model led to higher peak signal-to-noise ratio and lower mean squared error levels than both an unregularized graph neural network and a differential equation solver. The method was validated using both two-timepoint and three-timepoint tau PET measures. The effectiveness of the approach was further confirmed by a cross-validation study.

摘要

tau缠结是阿尔茨海默病(AD)的病理生理标志,呈现出一种刻板的时空传播模式,与疾病进展和认知衰退密切相关。临床前证据表明,tau传播取决于神经元连接性,而非不同脑区之间的物理距离。在此,我们提出一种新的基于物理知识的几何学习模型,用于预测tau蛋白的积累和传播,该模型可直接从纵向tau成像数据中学习模式,同时接受物理原理的指导。该模型以潜在空间中具有基于物理正则化的图神经网络形式实现,能够以较小的数据量进行有效训练。为了对模型进行训练和验证,我们使用了来自哈佛衰老大脑研究的正电子发射断层扫描(PET)的纵向tau测量数据和扩散张量成像(DTI)的结构连接图。与未正则化的图神经网络和微分方程求解器相比,该模型具有更高的峰值信噪比和更低的均方误差水平。该方法使用双时间点和三时间点tau PET测量数据进行了验证。交叉验证研究进一步证实了该方法的有效性。

相似文献

本文引用的文献

6
Localizing Sources of Brain Disease Progression with Network Diffusion Model.利用网络扩散模型定位脑部疾病进展的源头
IEEE J Sel Top Signal Process. 2016 Oct;10(7):1214-1225. doi: 10.1109/JSTSP.2016.2601695. Epub 2016 Aug 19.
8
Harvard Aging Brain Study: Dataset and accessibility.哈佛衰老大脑研究:数据集与可获取性。
Neuroimage. 2017 Jan;144(Pt B):255-258. doi: 10.1016/j.neuroimage.2015.03.069. Epub 2015 Apr 3.
9
Alzheimer disease: a tale of two prions.阿尔茨海默病:两种朊病毒的故事。
Prion. 2013 Jan-Feb;7(1):14-9. doi: 10.4161/pri.22118. Epub 2012 Sep 10.
10
A network diffusion model of disease progression in dementia.痴呆症疾病进展的网络扩散模型。
Neuron. 2012 Mar 22;73(6):1204-15. doi: 10.1016/j.neuron.2011.12.040. Epub 2012 Mar 21.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验