Suppr超能文献

用于脑电-功能磁共振成像融合的功能源分离:在稳态视觉诱发电位中的应用

Functional Source Separation for EEG-fMRI Fusion: Application to Steady-State Visual Evoked Potentials.

作者信息

Ji Hong, Chen Badong, Petro Nathan M, Yuan Zejian, Zheng Nanning, Keil Andreas

机构信息

Department of Automation Science and Technology, Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an, China.

Department of Psychology, Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln, Lincoln, NE, United States.

出版信息

Front Neurorobot. 2019 May 14;13:24. doi: 10.3389/fnbot.2019.00024. eCollection 2019.

Abstract

Neurorobotics is one of the most ambitious fields in robotics, driving integration of interdisciplinary data and knowledge. One of the most productive areas of interdisciplinary research in this area has been the implementation of biologically-inspired mechanisms in the development of autonomous systems. Specifically, enabling such systems to display adaptive behavior such as learning from good and bad outcomes, has been achieved by quantifying and understanding the neural mechanisms of the brain networks mediating adaptive behaviors in humans and animals. For example, associative learning from aversive or dangerous outcomes is crucial for an autonomous system, to avoid dangerous situations in the future. A body of neuroscience research has suggested that the neurocomputations in the human brain during associative learning involve re-shaping of sensory responses. The nature of these adaptive changes in sensory processing during learning however are not yet well enough understood to be readily implemented into on-board algorithms for robotics application. Toward this overall goal, we record the simultaneous electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI), characterizing one candidate mechanism, i.e., large-scale brain oscillations. The present report examines the use of Functional Source Separation (FSS) as an optimization step in EEG-fMRI fusion that harnesses timing information to constrain the solutions that satisfy physiological assumptions. We applied this approach to the voxel-wise correlation of steady-state visual evoked potential (ssVEP) amplitude and blood oxygen level-dependent imaging (BOLD), across both time series. The results showed the benefit of FSS for the extraction of robust ssVEP signals during simultaneous EEG-fMRI recordings. Applied to data from a 3-phase aversive conditioning paradigm, the correlation maps across the three phases (habituation, acquisition, extinction) show converging results, notably major overlapping areas in both primary and extended visual cortical regions, including calcarine sulcus, lingual cortex, and cuneus. In addition, during the acquisition phase when aversive learning occurs, we observed additional correlations between ssVEP and BOLD in the anterior cingulate cortex (ACC) as well as the precuneus and superior temporal gyrus.

摘要

神经机器人学是机器人学中最具雄心的领域之一,推动跨学科数据和知识的整合。该领域跨学科研究最富有成效的领域之一是在自主系统开发中实施受生物启发的机制。具体而言,通过量化和理解介导人类和动物适应性行为的脑网络的神经机制,使此类系统能够表现出适应性行为,例如从好的和坏的结果中学习。例如,从厌恶或危险结果中进行联想学习对于自主系统至关重要,以便在未来避免危险情况。大量神经科学研究表明,人类大脑在联想学习过程中的神经计算涉及感觉反应的重塑。然而,学习过程中感觉处理这些适应性变化的本质尚未得到充分理解,无法轻易应用于机器人应用的机载算法中。为了实现这一总体目标,我们同时记录脑电图(EEG)和功能磁共振成像(fMRI),表征一种候选机制,即大规模脑振荡。本报告研究了功能源分离(FSS)作为EEG-fMRI融合中的优化步骤的应用,该步骤利用时间信息来约束满足生理假设的解决方案。我们将这种方法应用于稳态视觉诱发电位(ssVEP)幅度与血氧水平依赖性功能磁共振成像(BOLD)在两个时间序列上的体素级相关性分析。结果表明,FSS有助于在同步EEG-fMRI记录期间提取稳健的ssVEP信号。应用于来自三相厌恶条件范式的数据,三个阶段(习惯化、习得、消退)的相关图谱显示出趋同的结果,特别是在初级和扩展视觉皮层区域有主要的重叠区域,包括距状沟、舌回和楔叶。此外,在发生厌恶学习的习得阶段,我们观察到ssVEP与前扣带回皮层(ACC)以及楔前叶和颞上回之间存在额外的相关性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf88/6528067/b1ef5eee12b3/fnbot-13-00024-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验