Suppr超能文献

用于鉴别体素识别的逐组结构稀疏性

Groupwise structural sparsity for discriminative voxels identification.

作者信息

Ji Hong, Zhang Xiaowei, Chen Badong, Yuan Zejian, Zheng Nanning, Keil Andreas

机构信息

The Shaanxi Key Laboratory of Clothing Intelligence, School of Computer Science, Xi'an Polytechnic University, Xi'an, China.

Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong Univeristy, Xi'an, China.

出版信息

Front Neurosci. 2023 Sep 7;17:1247315. doi: 10.3389/fnins.2023.1247315. eCollection 2023.

Abstract

This paper investigates the selection of voxels for functional Magnetic Resonance Imaging (fMRI) brain data. We aim to identify a comprehensive set of discriminative voxels associated with human learning when exposed to a neutral visual stimulus that predicts an aversive outcome. However, due to the nature of the unconditioned stimuli (typically a noxious stimulus), it is challenging to obtain sufficient sample sizes for psychological experiments, given the tolerability of the subjects and ethical considerations. We propose a stable hierarchical voting (SHV) mechanism based on stability selection to address this challenge. This mechanism enables us to evaluate the quality of spatial random sampling and minimizes the risk of false and missed detections. We assess the performance of the proposed algorithm using simulated and publicly available datasets. The experiments demonstrate that the regularization strategy choice significantly affects the results' interpretability. When applying our algorithm to our collected fMRI dataset, it successfully identifies sparse and closely related patterns across subjects and displays stable weight maps for three experimental phases under the fear conditioning paradigm. These findings strongly support the causal role of aversive conditioning in altering visual-cortical activity.

摘要

本文研究了功能磁共振成像(fMRI)脑数据体素的选择。我们旨在识别一组全面的具有区分性的体素,这些体素与人类在接触预测厌恶结果的中性视觉刺激时的学习相关。然而,由于无条件刺激(通常是有害刺激)的性质,考虑到受试者的耐受性和伦理因素,为心理实验获得足够的样本量具有挑战性。我们提出了一种基于稳定性选择的稳定分层投票(SHV)机制来应对这一挑战。该机制使我们能够评估空间随机采样的质量,并将误检和漏检的风险降至最低。我们使用模拟数据集和公开可用数据集评估了所提算法的性能。实验表明,正则化策略的选择显著影响结果的可解释性。当将我们的算法应用于我们收集的fMRI数据集时,它成功地识别了受试者之间稀疏且密切相关的模式,并在恐惧条件范式下的三个实验阶段显示了稳定的权重图。这些发现有力地支持了厌恶条件作用在改变视觉皮层活动中的因果作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验