Suppr超能文献

通过间歇性空位实现纳米管和石墨烯中的硅取代

Silicon Substitution in Nanotubes and Graphene via Intermittent Vacancies.

作者信息

Inani Heena, Mustonen Kimmo, Markevich Alexander, Ding Er-Xiong, Tripathi Mukesh, Hussain Aqeel, Mangler Clemens, Kauppinen Esko I, Susi Toma, Kotakoski Jani

机构信息

Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria.

Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland.

出版信息

J Phys Chem C Nanomater Interfaces. 2019 May 23;123(20):13136-13140. doi: 10.1021/acs.jpcc.9b01894. Epub 2019 Apr 26.

Abstract

The chemical and electrical properties of single-walled carbon nanotubes (SWCNTs) and graphene can be modified by the presence of covalently bound impurities. Although this can be achieved by introducing chemical additives during synthesis, it often hinders growth and leads to limited crystallite size and quality. Here, through the simultaneous formation of vacancies with low-energy argon plasma and the thermal activation of adatom diffusion by laser irradiation, silicon impurities are incorporated into the lattice of both materials. After an exposure of ∼1 ion/nm, we find Si-substitution densities of 0.15 nm in graphene and 0.05 nm in nanotubes, as revealed by atomically resolved scanning transmission electron microscopy. In good agreement with predictions of Ar irradiation effects in SWCNTs, we find Si incorporated in both mono- and divacancies, with ∼2/3 being of the first type. Controlled inclusion of impurities in the quasi-1D and -2D carbon lattices may prove useful for applications such as gas sensing, and a similar approach might also be used to substitute other elements with migration barriers lower than that of carbon.

摘要

单壁碳纳米管(SWCNT)和石墨烯的化学和电学性质可通过共价键合杂质的存在而改变。虽然这可以通过在合成过程中引入化学添加剂来实现,但这通常会阻碍生长,并导致微晶尺寸和质量受限。在此,通过用低能氩等离子体同时形成空位以及通过激光辐照对吸附原子扩散进行热激活,硅杂质被掺入到这两种材料的晶格中。在暴露约1个离子/纳米后,通过原子分辨扫描透射电子显微镜观察发现,石墨烯中的硅取代密度为0.15纳米,纳米管中的为0.05纳米。与单壁碳纳米管中氩辐照效应的预测结果高度一致,我们发现硅既掺入单空位也掺入双空位,其中约2/3为第一种类型。在准一维和二维碳晶格中可控地引入杂质可能对诸如气体传感等应用有用,并且类似的方法也可用于替代迁移势垒低于碳的其他元素。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验