Azulay David N, Chai Liraz
Institute of Chemistry, Edmond J. Safra Campus, The Hebrew University of Jerusalem; The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, Edmond J. Safra Campus, The Hebrew University of Jerusalem.
Institute of Chemistry, Edmond J. Safra Campus, The Hebrew University of Jerusalem; The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, Edmond J. Safra Campus, The Hebrew University of Jerusalem;
J Vis Exp. 2019 May 14(147). doi: 10.3791/59638.
Biomineralization is the formation of minerals in the presence of organic molecules, often related with functional and/or structural roles in living organisms. It is a complex process and therefore a simple, in vitro, system is required to understand the effect of isolated molecules on the biomineralization process. In many cases, biomineralization is directed by biopolymers in the extracellular matrix. In order to evaluate the effect of isolated biopolymers on the morphology and structure of calcite in vitro, we have used the vapor diffusion method for the precipitation of calcium carbonate, scanning electron microscopy and micro Raman for the characterization, and ultraviolet-visible (UV/Vis) absorbance for measuring the quantity of a biopolymer in the crystals. In this method, we expose the isolated biopolymers, dissolved in a calcium chloride solution, to gaseous ammonia and carbon dioxide that originate from the decomposition of solid ammonium carbonate. Under the conditions where the solubility product of calcium carbonate is reached, calcium carbonate precipitates and crystals are formed. Calcium carbonate has different polymorphs that differ in their thermodynamic stability: amorphous calcium carbonate, vaterite, aragonite, and calcite. In the absence of biopolymers, under clean conditions, calcium carbonate is mostly present in the calcite form, which is the most thermodynamically stable polymorph of calcium carbonate. This method examines the effect of the biopolymeric additives on the morphology and structure of calcium carbonate crystals. Here, we demonstrate the protocol through the study of an extracellular bacterial protein, TapA, on the formation of calcium carbonate crystals. Specifically, we focus on the experimental set up, and characterization methods, such as optical and electron microscopy as well as Raman spectroscopy.
生物矿化是在有机分子存在的情况下形成矿物质的过程,通常与生物体中的功能和/或结构作用相关。这是一个复杂的过程,因此需要一个简单的体外系统来了解分离出的分子对生物矿化过程的影响。在许多情况下,生物矿化是由细胞外基质中的生物聚合物引导的。为了在体外评估分离出的生物聚合物对方解石形态和结构的影响,我们使用了气相扩散法来沉淀碳酸钙,用扫描电子显微镜和显微拉曼光谱进行表征,并用紫外可见(UV/Vis)吸光度来测量晶体中生物聚合物的量。在这种方法中,我们将溶解在氯化钙溶液中的分离出的生物聚合物暴露于由固体碳酸铵分解产生的气态氨和二氧化碳中。在达到碳酸钙溶度积的条件下,碳酸钙沉淀并形成晶体。碳酸钙有不同的多晶型物,它们的热力学稳定性不同:无定形碳酸钙、球霰石、文石和方解石。在没有生物聚合物的情况下,在清洁条件下,碳酸钙大多以方解石形式存在,这是碳酸钙最热力学稳定的多晶型物。这种方法研究了生物聚合物添加剂对碳酸钙晶体形态和结构的影响。在这里,我们通过研究一种细胞外细菌蛋白TapA对碳酸钙晶体形成的影响来展示该方案。具体来说,我们关注实验设置以及表征方法,如光学和电子显微镜以及拉曼光谱。