Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde, 18119 Rostock, Germany;
Marine Geology, Leibniz Institute for Baltic Sea Research Warnemünde, 18119 Rostock, Germany.
Proc Natl Acad Sci U S A. 2019 Jun 18;116(25):12153-12155. doi: 10.1073/pnas.1906000116. Epub 2019 Jun 3.
Mn is one of the most abundant redox-sensitive metals on earth. Some microorganisms are known to use Mn(IV) oxide (MnO) as electron acceptor for the oxidation of organic compounds or hydrogen (H), but so far the use of sulfide (HS) has been suggested but not proven. Here we report on a bacterial isolate which grows autotrophically and couples the reduction of MnO to the oxidation of HS or thiosulfate (SO) for energy generation. The isolate, originating from the Black Sea, is a species within the genus , which typically occurs with high cell numbers in the vicinity of sulfidic environments [Y. Han, M. Perner, 6, 989 (2015)]. HS and SO are oxidized completely to sulfate (SO) without the accumulation of intermediates. In the culture, Mn(IV) reduction proceeds via Mn(III) and finally precipitation of Ca-rich Mn(II) carbonate [Mn(Ca)CO]. In contrast to Mn-reducing bacteria, which use organic electron donors or H, Fe oxides are not observed to support growth, which may either indicate an incomplete gene set or a different pathway for extracellular electron transfer.
锰是地球上最丰富的氧化还原敏感金属之一。已知一些微生物将 Mn(IV)氧化物 (MnO) 用作氧化有机化合物或氢气 (H) 的电子受体,但到目前为止,已经有人提出但尚未证明使用硫化物 (HS)。在这里,我们报告了一种细菌分离株,它可以自养生长,并将 MnO 的还原与 HS 或硫代硫酸盐 (SO) 的氧化耦合起来,以产生能量。该分离株源自黑海,属于 属,通常在靠近硫化环境的地方以高细胞数出现[Y. Han, M. Perner, 6, 989 (2015)]。HS 和 SO 被完全氧化为硫酸盐 (SO),没有中间产物积累。在培养物中,Mn(IV)还原通过 Mn(III)进行,最终沉淀出富含钙的 Mn(II)碳酸盐[Mn(Ca)CO]。与使用有机电子供体或 H 的 Mn 还原菌不同,Fe 氧化物不能支持生长,这可能表明其基因集不完整或存在不同的细胞外电子转移途径。