School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400.
Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0400.
Proc Natl Acad Sci U S A. 2019 Jun 18;116(25):12167-12172. doi: 10.1073/pnas.1900172116. Epub 2019 Jun 3.
Copper is controlled by a sophisticated network of transport and storage proteins within mammalian cells, yet its uptake and efflux occur with rapid kinetics. Present as Cu(I) within the reducing intracellular environment, the nature of this labile copper pool remains elusive. While glutathione is involved in copper homeostasis and has been assumed to buffer intracellular copper, we demonstrate with a ratiometric fluorescent indicator, crisp-17, that cytosolic Cu(I) levels are buffered to the vicinity of 1 aM, where negligible complexation by glutathione is expected. Enabled by our phosphine sulfide-stabilized phosphine (PSP) ligand design strategy, crisp-17 offers a Cu(I) dissociation constant of 8 aM, thus exceeding the binding affinities of previous synthetic Cu(I) probes by four to six orders of magnitude. Two-photon excitation microscopy with crisp-17 revealed rapid, reversible increases in intracellular Cu(I) availability upon addition of the ionophoric complex CuGTSM or the thiol-selective oxidant 2,2'-dithiodipyridine (DTDP). While the latter effect was dramatically enhanced in 3T3 cells grown in the presence of supplemental copper and in cultured Menkes mutant fibroblasts exhibiting impaired copper efflux, basal Cu(I) availability in these cells showed little difference from controls, despite large increases in total copper content. Intracellular copper is thus tightly buffered by endogenous thiol ligands with significantly higher affinity than glutathione. The dual utility of crisp-17 to detect normal intracellular buffered Cu(I) levels as well as to probe the depth of the labile copper pool in conjunction with DTDP provides a promising strategy to characterize perturbations of cellular copper homeostasis.
铜在哺乳动物细胞内通过复杂的转运和储存蛋白网络进行调控,但铜的摄取和外排却具有快速动力学。在还原的细胞内环境中以 Cu(I) 的形式存在,这种不稳定铜池的性质仍然难以捉摸。尽管谷胱甘肽参与铜稳态平衡,并且被认为可以缓冲细胞内的铜,但我们使用比率荧光指示剂 crisp-17 证明,细胞溶质 Cu(I) 水平被缓冲到接近 1 aM,在这个浓度下谷胱甘肽几乎不会与之形成复合物。由于我们的膦硫化物稳定膦 (PSP) 配体设计策略,crisp-17 提供了 8 aM 的 Cu(I) 离解常数,因此超过了之前合成的 Cu(I) 探针的结合亲和力四个到六个数量级。用 crisp-17 进行双光子激发显微镜观察显示,加入离子载体复合物 CuGTSM 或硫醇选择性氧化剂 2,2'-二硫代二吡啶 (DTDP) 后,细胞内 Cu(I) 的可用性会迅速、可逆地增加。尽管在添加补充铜的条件下生长的 3T3 细胞和表现出铜外排受损的 Menkes 突变成纤维细胞中,后一种效应显著增强,但这些细胞中的基础 Cu(I) 可用性与对照相比几乎没有差异,尽管总铜含量有很大增加。因此,细胞内的铜被内源性硫醇配体紧密缓冲,其亲和力明显高于谷胱甘肽。crisp-17 具有双重用途,可以检测正常细胞内缓冲的 Cu(I) 水平,也可以与 DTDP 一起探测不稳定铜池的深度,为研究细胞铜稳态平衡的扰动提供了一种很有前途的策略。