Morgan M T, McCallum A, Fahrni C J
School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332-0400, USA. ; Tel: +1 404 385-1164.
Chem Sci. 2016 Feb;7(2):1468-1473. doi: 10.1039/C5SC03643G. Epub 2015 Dec 1.
Fluorescence probes represent an attractive solution for the detection of the biologically important Cu(I) cation; however, achieving a bright, high-contrast response has been a challenging goal. Concluding from previous studies on pyrazoline-based fluorescent Cu(I) probes, the maximum attainable fluorescence contrast and quantum yield were limited due to several non-radiative deactivation mechanisms, including ternary complex formation, excited state protonation, and colloidal aggregation in aqueous solution. Through knowledge-driven optimization of the ligand and fluorophore architectures, we overcame these limitations in the design of CTAP-3, a Cu(I)-selective fluorescent probe offering a 180-fold fluorescence enhancement, 41% quantum yield, and a limit of detection in the sub-part-per-trillion concentration range. In contrast to lipophilic Cu(I)-probes, CTAP-3 does not aggregate and interacts only weakly with lipid bilayers, thus maintaining a high contrast ratio even in the presence of liposomes.
荧光探针是检测具有生物学重要性的Cu(I)阳离子的一种有吸引力的解决方案;然而,实现明亮、高对比度的响应一直是一个具有挑战性的目标。从先前关于基于吡唑啉的荧光Cu(I)探针的研究可以得出结论,由于几种非辐射失活机制,包括三元络合物形成、激发态质子化和水溶液中的胶体聚集,可达到的最大荧光对比度和量子产率受到限制。通过对配体和荧光团结构进行知识驱动的优化,我们在CTAP-3的设计中克服了这些限制,CTAP-3是一种Cu(I)选择性荧光探针,具有180倍的荧光增强、41%的量子产率以及在万亿分之一浓度范围内的检测限。与亲脂性Cu(I)探针不同,CTAP-3不会聚集,并且仅与脂质双层发生微弱相互作用,因此即使在存在脂质体的情况下也能保持高对比度。