Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
Bioinformatics. 2019 Dec 15;35(24):5121-5127. doi: 10.1093/bioinformatics/btz459.
Protein-peptide interactions mediate a wide variety of cellular and biological functions. Methods for predicting these interactions have garnered a lot of interest over the past few years, as witnessed by the rapidly growing number of peptide-based therapeutic molecules currently in clinical trials. The size and flexibility of peptides has shown to be challenging for existing automated docking software programs.
Here we present AutoDock CrankPep or ADCP in short, a novel approach to dock flexible peptides into rigid receptors. ADCP folds a peptide in the potential field created by the protein to predict the protein-peptide complex. We show that it outperforms leading peptide docking methods on two protein-peptide datasets commonly used for benchmarking docking methods: LEADS-PEP and peptiDB, comprised of peptides with up to 15 amino acids in length. Beyond these datasets, ADCP reliably docked a set of protein-peptide complexes containing peptides ranging in lengths from 16 to 20 amino acids. The robust performance of ADCP on these longer peptides enables accurate modeling of peptide-mediated protein-protein interactions and interactions with disordered proteins.
ADCP is distributed under the LGPL 2.0 open source license and is available at http://adcp.scripps.edu. The source code is available at https://github.com/ccsb-scripps/ADCP.
Supplementary data are available at Bioinformatics online.
蛋白质-肽相互作用介导了广泛的细胞和生物学功能。在过去的几年中,预测这些相互作用的方法引起了很多关注,这从目前正在临床试验中的大量基于肽的治疗分子就可以看出。肽的大小和灵活性对现有的自动对接软件程序提出了挑战。
在这里,我们提出了 AutoDock CrankPep 或简称 ADCP,这是一种将柔性肽对接入刚性受体的新方法。ADCP 在蛋白质产生的势能场中对肽进行折叠,以预测蛋白质-肽复合物。我们表明,它在两个常用于对接方法基准测试的蛋白质-肽数据集上的性能优于领先的肽对接方法:LEADS-PEP 和 peptiDB,这两个数据集包含长度达 15 个氨基酸的肽。除此之外,ADCP 还可靠地对接了一组含有长度为 16 至 20 个氨基酸的肽的蛋白质-肽复合物。ADCP 在这些较长肽上的稳健性能能够准确地模拟肽介导的蛋白质-蛋白质相互作用以及与无序蛋白质的相互作用。
ADCP 根据 LGPL 2.0 开源许可证分发,并可在 http://adcp.scripps.edu 上获得。源代码可在 https://github.com/ccsb-scripps/ADCP 上获得。
补充数据可在 Bioinformatics 在线获得。