Centre for Bioinformatics, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Sankara Nethralaya, Chennai, India.
School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India.
Chem Biol Drug Des. 2019 Dec;94(6):2041-2050. doi: 10.1111/cbdd.13607. Epub 2019 Sep 6.
Peptide therapeutics is proven to be highly potential in the treatment of various diseases due to its specificity, biological safety, and cost-effectiveness. Many of the FDA-approved peptides are currently available for therapeutic applications. In the current postgenomic era, high-throughput computational screening of drugs and peptides are highly exploited in peptide therapeutics for cost-effective and robustness. However, there is a paucity of efficient pipelines that automate virtual screening process of peptides through integration of open-source tools that are optimal to perform ensemble and flexible docking protocols. Hence, in this study, we developed a GUI-based pipeline named PepVis for automated script generation for large-scale peptide modeling and virtual screening. PepVis integrates Modpep and Gromacs for peptide structure modeling and optimization; AutoDock Vina, ZDOCK, and AutoDock CrankPep for virtual screening of peptides; ZRANK2 for rescoring of protein-peptide complexes, and FlexPepDock for flexible refinement of protein-peptide complexes. Benchmarking of ensemble docking through PepVis infers that ModPep + Vina to outperform ModPep + ZDock in terms of detecting near-natives from LEADS-PEP dataset. PepVis is built modular to incorporate many other docking algorithms in the future. This pipeline is distributed freely under the GNU GPL license and can be downloaded at https://github.com/inpacdb/PepVis.
肽类药物由于其特异性、生物安全性和成本效益,已被证明在治疗各种疾病方面具有巨大潜力。许多已获得 FDA 批准的肽类药物目前可用于治疗应用。在当前的后基因组时代,高通量药物和肽类的计算筛选在肽类治疗中得到了广泛应用,以实现成本效益和稳健性。然而,缺乏有效的管道,通过整合开源工具来自动化肽类的虚拟筛选过程,这些工具最适合执行组合和灵活对接协议。因此,在这项研究中,我们开发了一个基于 GUI 的管道,名为 PepVis,用于自动生成大规模肽类建模和虚拟筛选的脚本。PepVis 集成了 Modpep 和 Gromacs 用于肽结构建模和优化;AutoDock Vina、ZDOCK 和 AutoDock CrankPep 用于肽类的虚拟筛选;ZRANK2 用于重新评分蛋白质-肽复合物;以及 FlexPepDock 用于蛋白质-肽复合物的灵活细化。通过 PepVis 进行的组合对接基准测试表明,ModPep+Vina 在从 LEADS-PEP 数据集检测近天然配体方面优于 ModPep+ZDock。PepVis 是模块化构建的,以便将来可以整合许多其他对接算法。该管道在 GNU GPL 许可证下免费分发,可在 https://github.com/inpacdb/PepVis 上下载。