Suppr超能文献

PepVis:一种集成的肽虚拟筛选管道,用于集合和灵活对接协议。

PepVis: An integrated peptide virtual screening pipeline for ensemble and flexible docking protocols.

机构信息

Centre for Bioinformatics, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Sankara Nethralaya, Chennai, India.

School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India.

出版信息

Chem Biol Drug Des. 2019 Dec;94(6):2041-2050. doi: 10.1111/cbdd.13607. Epub 2019 Sep 6.

Abstract

Peptide therapeutics is proven to be highly potential in the treatment of various diseases due to its specificity, biological safety, and cost-effectiveness. Many of the FDA-approved peptides are currently available for therapeutic applications. In the current postgenomic era, high-throughput computational screening of drugs and peptides are highly exploited in peptide therapeutics for cost-effective and robustness. However, there is a paucity of efficient pipelines that automate virtual screening process of peptides through integration of open-source tools that are optimal to perform ensemble and flexible docking protocols. Hence, in this study, we developed a GUI-based pipeline named PepVis for automated script generation for large-scale peptide modeling and virtual screening. PepVis integrates Modpep and Gromacs for peptide structure modeling and optimization; AutoDock Vina, ZDOCK, and AutoDock CrankPep for virtual screening of peptides; ZRANK2 for rescoring of protein-peptide complexes, and FlexPepDock for flexible refinement of protein-peptide complexes. Benchmarking of ensemble docking through PepVis infers that ModPep + Vina to outperform ModPep + ZDock in terms of detecting near-natives from LEADS-PEP dataset. PepVis is built modular to incorporate many other docking algorithms in the future. This pipeline is distributed freely under the GNU GPL license and can be downloaded at https://github.com/inpacdb/PepVis.

摘要

肽类药物由于其特异性、生物安全性和成本效益,已被证明在治疗各种疾病方面具有巨大潜力。许多已获得 FDA 批准的肽类药物目前可用于治疗应用。在当前的后基因组时代,高通量药物和肽类的计算筛选在肽类治疗中得到了广泛应用,以实现成本效益和稳健性。然而,缺乏有效的管道,通过整合开源工具来自动化肽类的虚拟筛选过程,这些工具最适合执行组合和灵活对接协议。因此,在这项研究中,我们开发了一个基于 GUI 的管道,名为 PepVis,用于自动生成大规模肽类建模和虚拟筛选的脚本。PepVis 集成了 Modpep 和 Gromacs 用于肽结构建模和优化;AutoDock Vina、ZDOCK 和 AutoDock CrankPep 用于肽类的虚拟筛选;ZRANK2 用于重新评分蛋白质-肽复合物;以及 FlexPepDock 用于蛋白质-肽复合物的灵活细化。通过 PepVis 进行的组合对接基准测试表明,ModPep+Vina 在从 LEADS-PEP 数据集检测近天然配体方面优于 ModPep+ZDock。PepVis 是模块化构建的,以便将来可以整合许多其他对接算法。该管道在 GNU GPL 许可证下免费分发,可在 https://github.com/inpacdb/PepVis 上下载。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验