Wang Junjie, Deng Qingao, Qi Lu
The Second Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang Uygur Autonomous Region, China.
The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang Uygur Autonomous Region, China.
Sci Rep. 2025 Jul 1;15(1):20915. doi: 10.1038/s41598-025-05740-4.
This research delved into the molecular mechanism underlying dioctyl terephthalate (DOTP)-related periodontitis (PD) through the application of network toxicology, molecular docking, and molecular dynamics simulations. By leveraging data from SwissTargetPrediction, SuperPred, and GeneCards databases, targets associated with DOTP toxicity and PD were pinpointed, leading to the identification of 37 shared targets through a comprehensive analysis. Enrichment analysis unveiled significant implications in inflammatory responses (e.g., the AGE-RAGE signaling pathway) and immune regulatory pathways (e.g., the C-type lectin receptor pathway). Core targets (PTGS2, MAPK14, NFKB1, STAT1) were pinpointed utilizing Cytoscape and molecular docking techniques. DOTP exhibited robust binding to these targets through hydrogen bonding and hydrophobic interactions, with the DOTP-PTGS2 complex displaying the most favorable binding energy (- 7.1 kcal/mol). Molecular dynamics simulations validated the stability of this complex, demonstrating the lowest root mean square deviation (RMSD) of 0.22 nm and the largest buried solvent-accessible surface area (Buried SASA) of 12 nm, indicating its superior stability. This investigation elucidates the molecular basis of DOTP-related PD, underscores the efficacy of network toxicology and computational modeling in environmental health risk assessment, and provides a theoretical framework for targeted interventions.
本研究通过网络毒理学、分子对接和分子动力学模拟,深入探究了邻苯二甲酸二辛酯(DOTP)相关牙周炎(PD)的分子机制。利用来自SwissTargetPrediction、SuperPred和GeneCards数据库的数据,确定了与DOTP毒性和PD相关的靶点,通过综合分析鉴定出37个共同靶点。富集分析揭示了其在炎症反应(如AGE-RAGE信号通路)和免疫调节通路(如C型凝集素受体通路)中的重要意义。利用Cytoscape和分子对接技术确定了核心靶点(PTGS2、MAPK14、NFKB1、STAT1)。DOTP通过氢键和疏水相互作用与这些靶点表现出强烈的结合,其中DOTP-PTGS2复合物显示出最有利的结合能(-7.1千卡/摩尔)。分子动力学模拟验证了该复合物的稳定性,其最低均方根偏差(RMSD)为0.22纳米,最大埋藏溶剂可及表面积(Buried SASA)为12纳米,表明其具有卓越的稳定性。本研究阐明了DOTP相关PD的分子基础,强调了网络毒理学和计算建模在环境健康风险评估中的有效性,并为靶向干预提供了理论框架。