Suppr超能文献

神经紊乱中的突触消除。

Synaptic Elimination in Neurological Disorders.

机构信息

Laboratório de Neurobioquímica, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.

DB Biotech, Kosice, Slovakia.

出版信息

Curr Neuropharmacol. 2019;17(11):1071-1095. doi: 10.2174/1570159X17666190603170511.

Abstract

Synapses are well known as the main structures responsible for transmitting information through the release and recognition of neurotransmitters by pre- and post-synaptic neurons. These structures are widely formed and eliminated throughout the whole lifespan via processes termed synaptogenesis and synaptic pruning, respectively. Whilst the first process is needed for ensuring proper connectivity between brain regions and also with the periphery, the second phenomenon is important for their refinement by eliminating weaker and unnecessary synapses and, at the same time, maintaining and favoring the stronger ones, thus ensuring proper synaptic transmission. It is well-known that synaptic elimination is modulated by neuronal activity. However, only recently the role of the classical complement cascade in promoting this phenomenon has been demonstrated. Specifically, microglial cells recognize activated complement component 3 (C3) bound to synapses targeted for elimination, triggering their engulfment. As this is a highly relevant process for adequate neuronal functioning, disruptions or exacerbations in synaptic pruning could lead to severe circuitry alterations that could underlie neuropathological alterations typical of neurological and neuropsychiatric disorders. In this review, we focus on discussing the possible involvement of excessive synaptic elimination in Alzheimer's disease, as it has already been reported dendritic spine loss in post-synaptic neurons, increased association of complement proteins with its synapses and, hence, augmented microglia-mediated pruning in animal models of this disorder. In addition, we briefly discuss how this phenomenon could be related to other neurological disorders, including multiple sclerosis and schizophrenia.

摘要

突触被广泛认为是主要的结构,负责通过前突触和后突触神经元释放和识别神经递质来传递信息。这些结构通过分别称为突触发生和突触修剪的过程在整个生命周期中广泛形成和消除。虽然第一个过程对于确保大脑区域之间以及与外围之间的适当连接是必要的,但第二个过程对于通过消除较弱和不必要的突触并同时维持和促进较强的突触来精细调整它们是很重要的,从而确保适当的突触传递。众所周知,突触消除受神经元活动的调节。然而,直到最近,经典补体级联反应在促进这种现象中的作用才得到证实。具体来说,小胶质细胞识别与被靶向消除的突触结合的激活补体成分 3 (C3),触发其吞噬作用。由于这是一个对神经元功能至关重要的过程,突触修剪的破坏或加剧可能导致严重的电路改变,这可能是阿尔茨海默病等神经和神经精神疾病的典型病理改变的基础。在这篇综述中,我们重点讨论了过度的突触消除在阿尔茨海默病中的可能作用,因为已经有报道称后突触神经元的树突棘丢失、补体蛋白与其突触的关联增加,以及由此导致的该疾病动物模型中小胶质细胞介导的修剪增强。此外,我们简要讨论了这种现象如何与其他神经疾病相关,包括多发性硬化症和精神分裂症。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99df/7052824/a951011074a5/CN-17-1071_F1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验