Suppr超能文献

头颈部癌症预后的新型临床因素和生物标志物:系统评价。

Novel prognostic clinical factors and biomarkers for outcome prediction in head and neck cancer: a systematic review.

机构信息

Department of Radiation Oncology and Radiotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany.

Department of Radiation Oncology and Radiotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany; German Cancer Research Center, Heidelberg, Germany; German Cancer Consortium Partner Site Berlin, Berlin, Germany.

出版信息

Lancet Oncol. 2019 Jun;20(6):e313-e326. doi: 10.1016/S1470-2045(19)30177-9.

Abstract

Current algorithms for the clinical management of patients with squamous cell carcinoma of the head and neck (HNSCC) are based on a stage-dependent strategy where all patients at the same TNM stage receive the same treatment. Patient outcomes might be substantially improved by biomarker-guided treatment selection based on individual differences in the genetic and biological characteristics of tumours. Rapid technical advances enabling fast and affordable comprehensive molecular characterisation of tumours have led to increased knowledge of the molecular pathways involved in neoplastic transformation and disease progression in HNSCC. Despite notable successes in other tumour entities, the exploitation of molecular data for the improvement of tumour staging, prognosis, and individual treatment selection for patients with HNSCC has not yet become clinical routine. In this Review, we discuss and merge existing and new information on prognostic biomarkers for HNSCC, with the potential to improve clinical management of patients in the near future.

摘要

目前,针对头颈部鳞状细胞癌(HNSCC)患者的临床管理的算法是基于一种依赖于分期的策略,即处于相同 TNM 分期的所有患者接受相同的治疗。通过基于肿瘤遗传和生物学特征的个体差异的生物标志物指导治疗选择,患者的预后可能会得到显著改善。快速的技术进步使得对肿瘤进行快速且负担得起的全面分子特征分析成为可能,从而增加了对 HNSCC 中涉及肿瘤转化和疾病进展的分子途径的了解。尽管在其他肿瘤实体中取得了显著的成功,但利用分子数据来改善 HNSCC 患者的肿瘤分期、预后和个体治疗选择尚未成为临床常规。在这篇综述中,我们讨论并整合了现有和新的关于 HNSCC 预后生物标志物的信息,这些信息有可能在不久的将来改善患者的临床管理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验