Zhang Junchao, Tian Xiaobo, Shao Jianbo, Luo Haibo, Liang Rongguang
Opt Express. 2019 May 13;27(10):14903-14912. doi: 10.1364/OE.27.014903.
The interferometry technique is commonly used to obtain the phase information of an object in optical metrology. The obtained wrapped phase is subject to a 2π ambiguity. To remove the ambiguity and obtain the correct phase, phase unwrapping is essential. Conventional phase unwrapping approaches are time-consuming and noise sensitive. To address those issues, we propose a new approach, where we transfer the task of phase unwrapping into a multi-class classification problem and introduce an efficient segmentation network to identify classes. Moreover, a noise-to-noise denoised network is integrated to preprocess noisy wrapped phase. We have demonstrated the proposed method with simulated data and in a real interferometric system.
干涉测量技术在光学计量中常用于获取物体的相位信息。所获得的包裹相位存在2π的相位模糊性。为了消除相位模糊并获得正确的相位,相位解包裹至关重要。传统的相位解包裹方法既耗时又对噪声敏感。为了解决这些问题,我们提出了一种新方法,即将相位解包裹任务转化为多类分类问题,并引入一个高效的分割网络来识别类别。此外,还集成了一个噪声到噪声的去噪网络来预处理有噪声的包裹相位。我们已经用模拟数据和实际干涉测量系统验证了所提出的方法。