Suppr超能文献

基于深度学习的随机双帧干涉测量法。

Random two-frame interferometry based on deep learning.

作者信息

Li Ziqiang, Li Xinyang, Liang Rongguang

出版信息

Opt Express. 2020 Aug 17;28(17):24747-24760. doi: 10.1364/OE.397904.

Abstract

A two-frame phase-shifting interferometric wavefront reconstruction method based on deep learning is proposed. By learning from a large number of simulation data based on a physical model, the wrapped phase can be calculated accurately from two interferograms with an unknown phase step. The phase step can be any value excluding the integral multiples of π and the size of interferograms can be flexible. This method does not need a pre-filtering to subtract the direct-current term, but only needs a simple normalization. Comparing with other two-frame methods in both simulations and experiments, the proposed method can achieve better performance.

摘要

提出了一种基于深度学习的双帧相移干涉波前重建方法。通过从基于物理模型的大量仿真数据中学习,可以从具有未知相位步长的两幅干涉图中准确计算出包裹相位。相位步长可以是除π的整数倍以外的任何值,干涉图的大小可以灵活变化。该方法不需要进行预滤波来减去直流项,只需要进行简单的归一化处理。在仿真和实验中与其他双帧方法进行比较,该方法能够取得更好的性能。

相似文献

引用本文的文献

1
Deep learning in optical metrology: a review.光学计量中的深度学习:综述
Light Sci Appl. 2022 Feb 23;11(1):39. doi: 10.1038/s41377-022-00714-x.

本文引用的文献

1
One-step robust deep learning phase unwrapping.一步稳健深度学习相位展开
Opt Express. 2019 May 13;27(10):15100-15115. doi: 10.1364/OE.27.015100.
10
Advanced iterative algorithm for phase extraction of randomly phase-shifted interferograms.
Opt Lett. 2004 Jul 15;29(14):1671-3. doi: 10.1364/ol.29.001671.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验