Univ. Grenoble Alpes, CEA, LETI, DTBS, 38000, Grenoble, France.
Sci Rep. 2020 Nov 19;10(1):20207. doi: 10.1038/s41598-020-76411-9.
A lens-free microscope is a simple imaging device performing in-line holographic measurements. In the absence of focusing optics, a reconstruction algorithm is used to retrieve the sample image by solving the inverse problem. This is usually performed by optimization algorithms relying on gradient computation. However the presence of local minima leads to unsatisfactory convergence when phase wrapping errors occur. This is particularly the case in large optical thickness samples, for example cells in suspension and cells undergoing mitosis. To date, the occurrence of phase wrapping errors in the holographic reconstruction limits the application of lens-free microscopy in live cell imaging. To overcome this issue, we propose a novel approach in which the reconstruction alternates between two approaches, an inverse problem optimization and deep learning. The computation starts with a first reconstruction guess of the cell sample image. The result is then fed into a neural network, which is trained to correct phase wrapping errors. The neural network prediction is next used as the initialization of a second and last reconstruction step, which corrects to a certain extent the neural network prediction errors. We demonstrate the applicability of this approach in solving the phase wrapping problem occurring with cells in suspension at large densities. This is a challenging sample that typically cannot be reconstructed without phase wrapping errors, when using inverse problem optimization alone.
无透镜显微镜是一种简单的成像设备,可进行在线全息测量。在没有聚焦光学器件的情况下,通过求解反问题,使用重建算法来获取样品图像。这通常是通过依赖梯度计算的优化算法来完成的。然而,当出现相位包裹错误时,由于存在局部最小值,会导致收敛不理想。在大光学厚度样品中,例如悬浮细胞和有丝分裂中的细胞,这种情况尤其如此。迄今为止,全息重建中的相位包裹错误的出现限制了无透镜显微镜在活细胞成像中的应用。为了克服这个问题,我们提出了一种新的方法,其中重建在两种方法之间交替进行,即反问题优化和深度学习。计算从细胞样品图像的第一次重建猜测开始。然后,将结果输入到神经网络中,该网络经过训练可以纠正相位包裹错误。神经网络预测接着被用作第二次也是最后一次重建步骤的初始化,该步骤可以在一定程度上纠正神经网络预测错误。我们证明了该方法在解决大密度悬浮细胞中出现的相位包裹问题中的适用性。这是一个具有挑战性的样本,当单独使用反问题优化时,通常会因相位包裹错误而无法重建。