Department of Crop Genomics & Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.
Plant Cell Physiol. 2019 Sep 1;60(9):2077-2085. doi: 10.1093/pcp/pcz104.
Zinc (Zn) and iron (Fe) are essential micronutrients for plant growth. Thus, it is important to understand the mechanisms of uptake, transport and accumulation of these micronutrients in maize to improve crop nutritional quality. Members of the zinc-regulated transporters, iron-regulated transporter-like protein (ZIP) family are responsible for the uptake and transport of divalent metal ions in plant. Previously, we showed that ZmZIP5 functionally complemented the Zn uptake double mutant zrt1zrt2, Fe-uptake double mutant fet3fet4 in yeast. In our β-glucuronidase (GUS) assay, the germinated seeds, young sheaths, and stems of ZmZIP5-promoter-GUS transgenic plants were stained. We generated and compared two maize lines for this study: Ubi-ZmZIP5, in which ZmZIP5 was constitutively overexpressed, and ZmZIP5i, a RNAi line. At the seedling stage, high levels of Zn and Fe were found in the roots and shoots of Ubi-ZmZIP5 plants, whereas low levels were found in the ZmZIP5i plants. Zn and Fe contents decreased in the seeds of Ubi-ZmZIP5 plants and remained unchanged in the seeds of ZmZIP5i plants. The seeds of Leg-ZmZIP5 plants, in which ZmZIP5 overexpression is specific to the endosperm, had higher levels of Zn and Fe. Our results imply that ZmZIP5 may play a role in Zn and Fe uptake and root-to-shoot translocation. Endosperm-specific ZmZIP5 overexpression could be useful for Zn and Fe biofortification of cereal grains.
锌(Zn)和铁(Fe)是植物生长所必需的微量元素。因此,了解这些微量元素在玉米中的吸收、运输和积累机制对于提高作物的营养品质非常重要。锌调节转运蛋白(ZIP)家族的成员负责植物中二价金属离子的吸收和运输。先前,我们表明 ZmZIP5 可在酵母中功能互补 Zn 吸收双突变体 zrt1zrt2、Fe 吸收双突变体 fet3fet4。在我们的β-葡萄糖醛酸酶(GUS)测定中,染色了 ZmZIP5 启动子-GUS 转基因植物的萌发种子、幼鞘和茎。为了进行这项研究,我们生成并比较了两个玉米品系:Ubi-ZmZIP5,其中 ZmZIP5 组成型过表达,以及 ZmZIP5i,一个 RNAi 系。在幼苗阶段,Ubi-ZmZIP5 植物的根和地上部分积累了大量的 Zn 和 Fe,而 ZmZIP5i 植物则积累较少。Ubi-ZmZIP5 植物的种子中的 Zn 和 Fe 含量降低,而 ZmZIP5i 植物的种子中的 Zn 和 Fe 含量保持不变。在种子中特异性过表达 ZmZIP5 的 Leg-ZmZIP5 植物具有更高水平的 Zn 和 Fe。我们的结果表明,ZmZIP5 可能在 Zn 和 Fe 的吸收以及根到地上部分的转运中发挥作用。胚乳特异性 ZmZIP5 过表达可能有助于谷类作物的 Zn 和 Fe 生物强化。