University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, BC V6T 1Z3, Canada.
Stanford University School of Medicine, Department of Neurobiology, Stanford, CA 94305, USA.
Cell Rep. 2019 Jun 4;27(10):2895-2908.e4. doi: 10.1016/j.celrep.2019.05.010.
Microglia, the brain's immune cells, maintain homeostasis and sense pathological changes by continuously surveying the parenchyma with highly motile large processes. Here, we demonstrate that microglia also use thin actin-dependent filopodia that allow fast nanoscale sensing within discrete regions. Filopodia are distinct from large processes by their size, speed, and regulation mechanism. Increasing cyclic AMP (cAMP) by activating norepinephrine G-coupled receptors, applying nitric oxide, or inhibiting phosphodiesterases rapidly increases filopodia but collapses large processes. Alternatively, G-coupled P2Y12 receptor activation collapses filopodia but triggers large processes extension with bulbous tips. Similar control of cytoskeletal dynamics and microglial morphology by cAMP is observed in ramified primary microglia, suggesting that filopodia are intrinsically generated sensing structures. Therefore, nanoscale surveillance of brain parenchyma by microglia requires localized cAMP increases that drive filopodia formation. Shifting intracellular cAMP levels controls the polarity of microglial responses to changes in brain homeostasis and alters the scale of immunosurveillance.
小胶质细胞是大脑的免疫细胞,通过用高度能动的大突起不断探测实质内容物来维持内环境稳定并感知病理变化。在这里,我们证明小胶质细胞还利用薄的肌动蛋白依赖性丝状伪足,以便在离散区域内进行快速的纳米级传感。丝状伪足与大突起在大小、速度和调节机制上有所不同。通过激活去甲肾上腺素 G 蛋白偶联受体、应用一氧化氮或抑制磷酸二酯酶来增加环磷酸腺苷 (cAMP) 可快速增加丝状伪足,但会使大突起崩溃。相反,G 蛋白偶联 P2Y12 受体的激活会使丝状伪足崩溃,但会触发带有球状尖端的大突起延伸。在有分支的原代小胶质细胞中也观察到 cAMP 对细胞骨架动力学和小胶质细胞形态的类似控制,表明丝状伪足是内在产生的感应结构。因此,小胶质细胞对脑实质的纳米级监测需要局部 cAMP 的增加,从而驱动丝状伪足的形成。改变细胞内 cAMP 水平控制小胶质细胞对脑内环境稳定变化的反应极性,并改变免疫监视的范围。