Department of Radiation Oncology, University of California-Los Angeles, Los Angeles, CA, 90095, USA.
Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
Med Phys. 2021 Jan;48(1):57-70. doi: 10.1002/mp.14329. Epub 2020 Jul 13.
In intensity-modulated proton therapy (IMPT), unaccounted-for variation in biological effectiveness contributes to the discrepancy between the constant relative biological effectiveness (RBE) model prediction and experimental observation. It is desirable to incorporate biological doses in treatment planning to improve modeling accuracy and consequently achieve a higher therapeutic ratio. This study addresses this demand by developing a method to incorporate linear energy transfer (LET) into beam orientation optimization (BOO).
Instead of RBE-weighted dose, this LET weighted BOO (LETwBOO) framework uses the dose and LET product (LET D) as the biological surrogate. The problem is formulated with a physical dose fidelity term, a LET D constraint term, and a group sparsity term. The LET D of organs at risks is penalized for minimizing the biological effect while maintaining the physical dose objectives. Group sparsity is used to reduce the number of active beams from 600-800 non-coplanar candidate beams to between 2 and 4. This LETwBOO method was tested on three skull base tumor (SBT) patients and three bilateral head-and-neck (H&N) patients. The LETwBOO plans were compared with IMPT plans using manually selected beams with only physical dose constraint (MAN) and the initial MAN plan reoptimized with additional LET D constraint (LETwMAN).
The LETwBOO plans show superior physical dose and LET D sparing. On average, the [mean, maximal] doses of organs at risks (OARs) in LETwBOO are reduced by [2.85, 4.6] GyRBE from the MAN plans in the SBT cases and reduced by [0.9, 2.5] GyRBE in the H&N cases, while LETwMAN is comparable to MAN. cLET × Ds of PTVs are comparable in LETwBOO and LETwMAN, where c is a scaling factor of 0.04 μm/keV. On average, in the SBT cases, LETwBOO reduces the OAR [mean, maximal] cLET × D by [1.1, 2.9] Gy from the MAN plans, compared to the reduction by LETwMAN from MAN of [0.7, 1.7] Gy. In the H&N cases, LETwBOO reduces the OAR [mean, maximal] cLET × D by [0.8, 2.6] Gy from the MAN plans, compared to the reduction by LETwMAN from MAN of [0.3, 1.2] Gy.
We developed a novel LET weighted BOO method for IMPT to generate plans with improved physical and biological OAR sparing compared with the plans unaccounted for biological effects from BOO.
在调强质子治疗(IMPT)中,生物效应的未被考虑的变化导致了恒定相对生物效应(RBE)模型预测与实验观察之间的差异。将生物剂量纳入治疗计划以提高建模准确性,从而实现更高的治疗比是很有必要的。本研究通过开发一种将线性能量传递(LET)纳入射束方向优化(BOO)的方法来满足这一需求。
与 RBE 加权剂量不同,这种基于 LET 的 BOO(LETwBOO)框架使用剂量和 LET 乘积(LET D)作为生物学替代物。该问题通过物理剂量保真度项、LET D 约束项和组稀疏项进行公式化。为了在保持物理剂量目标的同时最小化生物学效应,对风险器官的 LET D 进行惩罚。使用组稀疏性将非共面候选射束的数量从 600-800 减少到 2-4。该 LETwBOO 方法在三个颅底肿瘤(SBT)患者和三个双侧头颈部(H&N)患者上进行了测试。将 LETwBOO 计划与仅使用物理剂量约束的 IMPT 计划(MAN)进行了比较,并对初始 MAN 计划进行了重新优化,增加了 LET D 约束(LETwMAN)。
LETwBOO 计划在物理剂量和 LET D 保护方面表现出优势。平均而言,SBT 病例中 LETwBOO 计划的风险器官(OAR)[平均、最大]剂量比 MAN 计划降低了[2.85、4.6]GyRBE,H&N 病例中降低了[0.9、2.5]GyRBE,而 LETwMAN 与 MAN 相似。PTV 的 cLET × Ds 在 LETwBOO 和 LETwMAN 中是可比的,其中 c 是 0.04 μm/keV 的缩放因子。平均而言,在 SBT 病例中,与 LETwMAN 从 MAN 计划降低的 OAR [平均、最大] cLET × D 的[0.7、1.7]Gy 相比,LETwBOO 从 MAN 计划降低了[1.1、2.9]Gy。在 H&N 病例中,与 LETwMAN 从 MAN 计划降低的 OAR [平均、最大] cLET × D 的[0.3、1.2]Gy 相比,LETwBOO 从 MAN 计划降低了[0.8、2.6]Gy。
我们开发了一种新的基于 LET 的 BOO 方法用于 IMPT,与未考虑生物效应的 BOO 生成的计划相比,该方法能在提高物理和生物学 OAR 保护方面产生更好的效果。