Suppr超能文献

线性能量转移加权质子调强治疗的射束方向优化。

Linear energy transfer weighted beam orientation optimization for intensity-modulated proton therapy.

机构信息

Department of Radiation Oncology, University of California-Los Angeles, Los Angeles, CA, 90095, USA.

Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA.

出版信息

Med Phys. 2021 Jan;48(1):57-70. doi: 10.1002/mp.14329. Epub 2020 Jul 13.

Abstract

PURPOSE

In intensity-modulated proton therapy (IMPT), unaccounted-for variation in biological effectiveness contributes to the discrepancy between the constant relative biological effectiveness (RBE) model prediction and experimental observation. It is desirable to incorporate biological doses in treatment planning to improve modeling accuracy and consequently achieve a higher therapeutic ratio. This study addresses this demand by developing a method to incorporate linear energy transfer (LET) into beam orientation optimization (BOO).

METHODS

Instead of RBE-weighted dose, this LET weighted BOO (LETwBOO) framework uses the dose and LET product (LET   D) as the biological surrogate. The problem is formulated with a physical dose fidelity term, a LET   D constraint term, and a group sparsity term. The LET   D of organs at risks is penalized for minimizing the biological effect while maintaining the physical dose objectives. Group sparsity is used to reduce the number of active beams from 600-800 non-coplanar candidate beams to between 2 and 4. This LETwBOO method was tested on three skull base tumor (SBT) patients and three bilateral head-and-neck (H&N) patients. The LETwBOO plans were compared with IMPT plans using manually selected beams with only physical dose constraint (MAN) and the initial MAN plan reoptimized with additional LET   D constraint (LETwMAN).

RESULTS

The LETwBOO plans show superior physical dose and LET   D sparing. On average, the [mean, maximal] doses of organs at risks (OARs) in LETwBOO are reduced by [2.85, 4.6] GyRBE from the MAN plans in the SBT cases and reduced by [0.9, 2.5] GyRBE in the H&N cases, while LETwMAN is comparable to MAN. cLET × Ds of PTVs are comparable in LETwBOO and LETwMAN, where c is a scaling factor of 0.04 μm/keV. On average, in the SBT cases, LETwBOO reduces the OAR [mean, maximal] cLET × D by [1.1, 2.9] Gy from the MAN plans, compared to the reduction by LETwMAN from MAN of [0.7, 1.7] Gy. In the H&N cases, LETwBOO reduces the OAR [mean, maximal] cLET × D by [0.8, 2.6] Gy from the MAN plans, compared to the reduction by LETwMAN from MAN of [0.3, 1.2] Gy.

CONCLUSION

We developed a novel LET weighted BOO method for IMPT to generate plans with improved physical and biological OAR sparing compared with the plans unaccounted for biological effects from BOO.

摘要

目的

在调强质子治疗(IMPT)中,生物效应的未被考虑的变化导致了恒定相对生物效应(RBE)模型预测与实验观察之间的差异。将生物剂量纳入治疗计划以提高建模准确性,从而实现更高的治疗比是很有必要的。本研究通过开发一种将线性能量传递(LET)纳入射束方向优化(BOO)的方法来满足这一需求。

方法

与 RBE 加权剂量不同,这种基于 LET 的 BOO(LETwBOO)框架使用剂量和 LET 乘积(LET D)作为生物学替代物。该问题通过物理剂量保真度项、LET D 约束项和组稀疏项进行公式化。为了在保持物理剂量目标的同时最小化生物学效应,对风险器官的 LET D 进行惩罚。使用组稀疏性将非共面候选射束的数量从 600-800 减少到 2-4。该 LETwBOO 方法在三个颅底肿瘤(SBT)患者和三个双侧头颈部(H&N)患者上进行了测试。将 LETwBOO 计划与仅使用物理剂量约束的 IMPT 计划(MAN)进行了比较,并对初始 MAN 计划进行了重新优化,增加了 LET D 约束(LETwMAN)。

结果

LETwBOO 计划在物理剂量和 LET D 保护方面表现出优势。平均而言,SBT 病例中 LETwBOO 计划的风险器官(OAR)[平均、最大]剂量比 MAN 计划降低了[2.85、4.6]GyRBE,H&N 病例中降低了[0.9、2.5]GyRBE,而 LETwMAN 与 MAN 相似。PTV 的 cLET × Ds 在 LETwBOO 和 LETwMAN 中是可比的,其中 c 是 0.04 μm/keV 的缩放因子。平均而言,在 SBT 病例中,与 LETwMAN 从 MAN 计划降低的 OAR [平均、最大] cLET × D 的[0.7、1.7]Gy 相比,LETwBOO 从 MAN 计划降低了[1.1、2.9]Gy。在 H&N 病例中,与 LETwMAN 从 MAN 计划降低的 OAR [平均、最大] cLET × D 的[0.3、1.2]Gy 相比,LETwBOO 从 MAN 计划降低了[0.8、2.6]Gy。

结论

我们开发了一种新的基于 LET 的 BOO 方法用于 IMPT,与未考虑生物效应的 BOO 生成的计划相比,该方法能在提高物理和生物学 OAR 保护方面产生更好的效果。

相似文献

1
Linear energy transfer weighted beam orientation optimization for intensity-modulated proton therapy.
Med Phys. 2021 Jan;48(1):57-70. doi: 10.1002/mp.14329. Epub 2020 Jul 13.
2
Robust beam orientation optimization for intensity-modulated proton therapy.
Med Phys. 2019 Aug;46(8):3356-3370. doi: 10.1002/mp.13641. Epub 2019 Jun 26.
4
Fraction-variant beam orientation optimization for intensity-modulated proton therapy.
Med Phys. 2020 Sep;47(9):3826-3834. doi: 10.1002/mp.14340. Epub 2020 Aug 2.
5
Robust intensity-modulated proton therapy to reduce high linear energy transfer in organs at risk.
Med Phys. 2017 Dec;44(12):6138-6147. doi: 10.1002/mp.12610. Epub 2017 Oct 26.
8
Difference in LET-based biological doses between IMPT optimization techniques: Robust and PTV-based optimizations.
J Appl Clin Med Phys. 2020 Apr;21(4):42-50. doi: 10.1002/acm2.12844. Epub 2020 Mar 9.
9
Spot scanning proton arc therapy reduces toxicity in oropharyngeal cancer patients.
Med Phys. 2023 Mar;50(3):1305-1317. doi: 10.1002/mp.16098. Epub 2023 Jan 17.

引用本文的文献

2
Biological optimization for hybrid proton-photon radiotherapy.
Phys Med Biol. 2024 May 30;69(11). doi: 10.1088/1361-6560/ad4d51.
4
Hypoxia-informed RBE-weighted beam orientation optimization for intensity modulated proton therapy.
Med Phys. 2024 Mar;51(3):2320-2333. doi: 10.1002/mp.16978. Epub 2024 Feb 12.
5
Incorporating variable RBE in IMPT optimization for ependymoma.
J Appl Clin Med Phys. 2024 Jan;25(1):e14207. doi: 10.1002/acm2.14207. Epub 2023 Nov 20.
7
An iterative convex relaxation method for proton LET optimization.
Phys Med Biol. 2023 Feb 20;68(5). doi: 10.1088/1361-6560/acb88d.
8
Linear Energy Transfer and Relative Biological Effectiveness Investigation of Various Structures for a Cohort of Proton Patients With Brain Tumors.
Adv Radiat Oncol. 2022 Nov 26;8(2):101128. doi: 10.1016/j.adro.2022.101128. eCollection 2023 Mar-Apr.
9
A Review of Proton Therapy - Current Status and Future Directions.
Precis Radiat Oncol. 2022 Jun;6(2):164-176. doi: 10.1002/pro6.1149. Epub 2022 Apr 27.
10
Reflections on beam configuration optimization for intensity-modulated proton therapy.
Phys Med Biol. 2022 Jun 27;67(13). doi: 10.1088/1361-6560/ac6fac.

本文引用的文献

2
Robust beam orientation optimization for intensity-modulated proton therapy.
Med Phys. 2019 Aug;46(8):3356-3370. doi: 10.1002/mp.13641. Epub 2019 Jun 26.
3
Report of the AAPM TG-256 on the relative biological effectiveness of proton beams in radiation therapy.
Med Phys. 2019 Mar;46(3):e53-e78. doi: 10.1002/mp.13390. Epub 2019 Feb 14.
4
Robust optimization for intensity-modulated proton therapy with soft spot sensitivity regularization.
Med Phys. 2019 Mar;46(3):1408-1425. doi: 10.1002/mp.13344. Epub 2019 Jan 21.
6
RBE Model-Based Biological Dose Optimization for Proton Radiobiology Studies.
Int J Part Ther. 2018 Summer;5(1):160-171. doi: 10.14338/IJPT-18-00007.1. Epub 2018 Sep 21.
7
Validation and clinical implementation of an accurate Monte Carlo code for pencil beam scanning proton therapy.
J Appl Clin Med Phys. 2018 Sep;19(5):558-572. doi: 10.1002/acm2.12420. Epub 2018 Jul 30.
9
The Radiobiology of Proton Therapy: Challenges and Opportunities Around Relative Biological Effectiveness.
Clin Oncol (R Coll Radiol). 2018 May;30(5):285-292. doi: 10.1016/j.clon.2018.01.010. Epub 2018 Feb 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验