Suppr超能文献

丝素-弹性蛋白二嵌段的可诱导原纤维形成

Inducible Fibril Formation of Silk-Elastin Diblocks.

作者信息

Willems Lione, Roberts Stefan, Weitzhandler Isaac, Chilkoti Ashutosh, Mastrobattista Enrico, van der Oost John, de Vries Renko

机构信息

Physical Chemistry and Soft Matter and Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.

Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States.

出版信息

ACS Omega. 2019 May 31;4(5):9135-9143. doi: 10.1021/acsomega.9b01025. Epub 2019 May 23.

Abstract

Silk-elastin block copolymers have such physical and biological properties that make them attractive biomaterials for applications ranging from tissue regeneration to drug delivery. Silk-elastin block copolymers that only assemble into fibrils at high concentrations can be used for a template-induced fibril assembly. This can be achieved by additionally including template-binding blocks that promote high local concentrations of polymers on the template, leading to a template-induced fibril assembly. We hypothesize that template-inducible silk-fibril formation, and hence high critical concentrations for fibril formation, requires careful tuning of the block lengths, to be close to a critical set of block lengths that separates fibril forming from nonfibril forming polymer architectures. Therefore, we explore herein the impact of tuning block lengths for silk-elastin diblock polypeptides on fibril formation. For silk-elastin diblocks E -S , in which the elastin pentamer repeat is E = GSGVP and the crystallizable silk octamer repeat is S = GAGAGAGQ, we find that no fibril formation occurs for = 6 but that the = 10 and 14 diblocks do show concentration-dependent fibril formation. For = 14 diblocks, no effect is observed of the length (with = 40, 60, 80) of the amorphous block on the lengths of the fibrils. In contrast, for the = 10 diblocks that are closest to the critical boundary for fibril formation, we find that long amorphous blocks ( = 80) oppose the growth of fibrils at low concentrations, making them suitable for engineering template-inducible fibril formation.

摘要

丝素 - 弹性蛋白嵌段共聚物具有这样的物理和生物学特性,使其成为从组织再生到药物递送等广泛应用中具有吸引力的生物材料。仅在高浓度下才组装成原纤维的丝素 - 弹性蛋白嵌段共聚物可用于模板诱导的原纤维组装。这可以通过额外引入促进聚合物在模板上形成高局部浓度的模板结合嵌段来实现,从而导致模板诱导的原纤维组装。我们推测,模板诱导的丝素原纤维形成以及因此形成原纤维所需的高临界浓度,需要仔细调整嵌段长度,使其接近区分形成原纤维和不形成原纤维的聚合物结构的一组临界嵌段长度。因此,我们在此探讨调整丝素 - 弹性蛋白二嵌段多肽的嵌段长度对原纤维形成的影响。对于丝素 - 弹性蛋白二嵌段E - S,其中弹性蛋白五聚体重复序列为E = GSGVP,可结晶的丝素八聚体重复序列为S = GAGAGAGQ,我们发现当n = 6时不发生原纤维形成,但n = 10和14的二嵌段确实显示出浓度依赖性的原纤维形成。对于n = 14的二嵌段,未观察到无定形嵌段的长度m(m = 40、60、80)对原纤维长度有影响。相比之下,对于最接近原纤维形成临界边界的n = 10的二嵌段,我们发现长的无定形嵌段(m = 80)在低浓度下会抑制原纤维的生长,使其适合用于工程化模板诱导的原纤维形成。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5873/6647970/125010a4b1d0/ao-2019-01025u_0001.jpg

相似文献

1
Inducible Fibril Formation of Silk-Elastin Diblocks.
ACS Omega. 2019 May 31;4(5):9135-9143. doi: 10.1021/acsomega.9b01025. Epub 2019 May 23.
2
Fibril formation by pH and temperature responsive silk-elastin block copolymers.
Biomacromolecules. 2013 Jan 14;14(1):48-55. doi: 10.1021/bm3011775. Epub 2012 Dec 27.
3
Nature of Amorphous Hydrophilic Block Affects Self-Assembly of an Artificial Viral Coat Polypeptide.
Biomacromolecules. 2019 Oct 14;20(10):3641-3647. doi: 10.1021/acs.biomac.9b00512. Epub 2019 Aug 29.
4
The self-assembly mechanism of fibril-forming silk-based block copolymers.
Phys Chem Chem Phys. 2011 Jun 14;13(22):10457-67. doi: 10.1039/c0cp02842h. Epub 2011 Apr 18.
5
Engineering aqueous fiber assembly into silk-elastin-like protein polymers.
Macromol Rapid Commun. 2014 Jul;35(14):1273-9. doi: 10.1002/marc.201400058. Epub 2014 May 3.
6
Elastin-like Polypeptide Diblock Copolymers Self-Assemble into Weak Micelles.
Macromolecules. 2015 Jun 23;48(12):4183-4195. doi: 10.1021/acs.macromol.5b00431. Epub 2015 Jun 11.
7
Silk-elastin-like protein biomaterials for the controlled delivery of therapeutics.
Expert Opin Drug Deliv. 2015 May;12(5):779-91. doi: 10.1517/17425247.2015.989830. Epub 2014 Dec 5.
8
Tunable self-assembly of genetically engineered silk--elastin-like protein polymers.
Biomacromolecules. 2011 Nov 14;12(11):3844-50. doi: 10.1021/bm201165h. Epub 2011 Sep 30.
10
Exploring molecular and mechanical gradients in structural bioscaffolds.
Biochemistry. 2004 Jun 22;43(24):7653-62. doi: 10.1021/bi049380h.

引用本文的文献

1
Encoding Structure in Intrinsically Disordered Protein Biomaterials.
Acc Chem Res. 2024 Feb 6;57(3):302-311. doi: 10.1021/acs.accounts.3c00624. Epub 2024 Jan 9.
2
Fibrous Scaffolds From Elastin-Based Materials.
Front Bioeng Biotechnol. 2021 Jul 16;9:652384. doi: 10.3389/fbioe.2021.652384. eCollection 2021.
3
Self-Assembly of Elastin-like Polypeptide Brushes on Silica Surfaces and Nanoparticles.
Biomacromolecules. 2021 May 10;22(5):1966-1979. doi: 10.1021/acs.biomac.1c00067. Epub 2021 Apr 19.
4
Nature of Amorphous Hydrophilic Block Affects Self-Assembly of an Artificial Viral Coat Polypeptide.
Biomacromolecules. 2019 Oct 14;20(10):3641-3647. doi: 10.1021/acs.biomac.9b00512. Epub 2019 Aug 29.

本文引用的文献

1
Injectable tissue integrating networks from recombinant polypeptides with tunable order.
Nat Mater. 2018 Dec;17(12):1154-1163. doi: 10.1038/s41563-018-0182-6. Epub 2018 Oct 15.
2
Biodegradable Porous Silk Microtubes for Tissue Vascularization.
J Mater Chem B. 2017;5(6):1227-1235. doi: 10.1039/C6TB02712A. Epub 2016 Dec 21.
3
Increased stem cells delivered using a silk gel/scaffold complex for enhanced bone regeneration.
Sci Rep. 2017 May 19;7(1):2175. doi: 10.1038/s41598-017-02053-z.
4
Phase Behavior and Self-Assembly of Perfectly Sequence-Defined and Monodisperse Multiblock Copolypeptides.
Biomacromolecules. 2017 Feb 13;18(2):599-609. doi: 10.1021/acs.biomac.6b01759. Epub 2017 Jan 31.
5
Cross-Linking and Bundling of Self-Assembled Protein-Based Polymer Fibrils via Heterodimeric Coiled Coils.
Biomacromolecules. 2016 Dec 12;17(12):3893-3901. doi: 10.1021/acs.biomac.6b01242. Epub 2016 Nov 7.
6
Nanoparticle-Templated Formation and Growth Mechanism of Curved Protein Polymer Fibrils.
Biomacromolecules. 2016 Jul 11;17(7):2392-8. doi: 10.1021/acs.biomac.6b00486. Epub 2016 Jun 10.
7
Fibrous Hydrogels for Cell Encapsulation: A Modular and Supramolecular Approach.
PLoS One. 2016 May 25;11(5):e0155625. doi: 10.1371/journal.pone.0155625. eCollection 2016.
8
Unidirectional Living Growth of Self-Assembled Protein Nanofibrils Revealed by Super-resolution Microscopy.
ACS Nano. 2016 May 24;10(5):4973-80. doi: 10.1021/acsnano.6b01017. Epub 2016 May 9.
9
Dock 'n roll: folding of a silk-inspired polypeptide into an amyloid-like beta solenoid.
Soft Matter. 2016 Apr 20;12(16):3721-9. doi: 10.1039/c6sm00169f.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验