Suppr超能文献

基因工程丝-弹性蛋白样蛋白聚合物的可调自组装。

Tunable self-assembly of genetically engineered silk--elastin-like protein polymers.

机构信息

Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States.

出版信息

Biomacromolecules. 2011 Nov 14;12(11):3844-50. doi: 10.1021/bm201165h. Epub 2011 Sep 30.

Abstract

Silk--elastin-like protein polymers (SELPs), consisting of the repeating units of silk and elastin blocks, combine a set of outstanding physical and biological properties of silk and elastin. Because of the unique properties, SELPs have been widely fabricated into various materials for the applications in drug delivery and tissue engineering. However, little is known about the fundamental self-assembly characteristics of these remarkable polymers. Here we propose a two-step self-assembly process of SELPs in aqueous solution for the first time and report the importance of the ratio of silk-to-elastin blocks in a SELP's repeating unit on the assembly of the SELP. Through precise tuning of the ratio of silk to elastin, various structures including nanoparticles, hydrogels, and nanofibers could be generated either reversibly or irreversibly. This assembly process might provide opportunities to generate innovative smart materials for biosensors, tissue engineering, and drug delivery. Furthermore, the newly developed SELPs in this study may be potentially useful as biomaterials for controlled drug delivery and biomedical engineering.

摘要

丝-弹性蛋白样蛋白聚合物(SELPs)由丝和弹性蛋白嵌段的重复单元组成,结合了丝和弹性蛋白的一系列优异的物理和生物学特性。由于其独特的性能,SELPs 已被广泛制成各种材料,用于药物输送和组织工程。然而,人们对这些非凡聚合物的基本自组装特性知之甚少。在这里,我们首次提出了 SELPs 在水溶液中的两步自组装过程,并报告了 SELP 重复单元中丝-弹性蛋白嵌段比例对 SELP 组装的重要性。通过精确调整丝和弹性蛋白的比例,可以生成各种结构,包括纳米颗粒、水凝胶和纳米纤维,无论是可逆的还是不可逆的。这种组装过程可能为生物传感器、组织工程和药物输送等领域提供创新的智能材料的机会。此外,本研究中开发的新型 SELPs 可能作为用于控制药物释放和生物医学工程的生物材料具有潜在的用途。

相似文献

1
Tunable self-assembly of genetically engineered silk--elastin-like protein polymers.
Biomacromolecules. 2011 Nov 14;12(11):3844-50. doi: 10.1021/bm201165h. Epub 2011 Sep 30.
2
Silk-elastin-like protein biomaterials for the controlled delivery of therapeutics.
Expert Opin Drug Deliv. 2015 May;12(5):779-91. doi: 10.1517/17425247.2015.989830. Epub 2014 Dec 5.
3
Rationally Designed Redox-Sensitive Protein Hydrogels with Tunable Mechanical Properties.
Biomacromolecules. 2016 Nov 14;17(11):3508-3515. doi: 10.1021/acs.biomac.6b00973. Epub 2016 Oct 11.
4
Hydrophobic drug-triggered self-assembly of nanoparticles from silk-elastin-like protein polymers for drug delivery.
Biomacromolecules. 2014 Mar 10;15(3):908-14. doi: 10.1021/bm4017594. Epub 2014 Feb 21.
5
Engineering aqueous fiber assembly into silk-elastin-like protein polymers.
Macromol Rapid Commun. 2014 Jul;35(14):1273-9. doi: 10.1002/marc.201400058. Epub 2014 May 3.
6
Genetically programmable thermoresponsive plasmonic gold/silk-elastin protein core/shell nanoparticles.
Langmuir. 2014 Apr 22;30(15):4406-14. doi: 10.1021/la403559t. Epub 2014 Apr 8.
7
Fabrication and Characterization of Recombinant Silk-Elastin-Like-Protein (SELP) Fiber.
Macromol Biosci. 2018 Dec;18(12):e1800265. doi: 10.1002/mabi.201800265. Epub 2018 Nov 12.
8
Electrospun silk-elastin-like fibre mats for tissue engineering applications.
Biomed Mater. 2013 Dec;8(6):065009. doi: 10.1088/1748-6041/8/6/065009. Epub 2013 Nov 28.
9
Silk-elastinlike recombinant polymers for gene therapy of head and neck cancer: from molecular definition to controlled gene expression.
J Control Release. 2009 Dec 16;140(3):256-61. doi: 10.1016/j.jconrel.2009.05.022. Epub 2009 May 24.
10
Surface Induced nanofiber growth by self-assembly of a silk-elastin-like protein polymer.
Langmuir. 2009 Nov 3;25(21):12682-6. doi: 10.1021/la9015993.

引用本文的文献

2
A Novel Gene Synthesis Platform for Designing Functional Protein Polymers.
Adv Sci (Weinh). 2025 Apr;12(15):e2410903. doi: 10.1002/advs.202410903. Epub 2025 Feb 23.
3
Spontaneous Self-Organized Order Emerging From Intrinsically Disordered Protein Polymers.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2025 Jan-Feb;17(1):e70003. doi: 10.1002/wnan.70003.
4
Effects of Mini-Spidroin Repeat Region on the Mechanical Properties of Artificial Spider Silk Fibers.
ACS Omega. 2024 Oct 7;9(41):42423-42432. doi: 10.1021/acsomega.4c06031. eCollection 2024 Oct 15.
5
Modifying Naturally Occurring, Nonmammalian-Sourced Biopolymers for Biomedical Applications.
ACS Biomater Sci Eng. 2024 Oct 14;10(10):5915-5938. doi: 10.1021/acsbiomaterials.4c00689. Epub 2024 Sep 11.
6
Programmability and biomedical utility of intrinsically-disordered protein polymers.
Adv Drug Deliv Rev. 2024 Sep;212:115418. doi: 10.1016/j.addr.2024.115418. Epub 2024 Jul 31.
7
Genetically Fusing Order-Promoting and Thermoresponsive Building Blocks to Design Hybrid Biomaterials.
Chemistry. 2024 May 28;30(30):e202400582. doi: 10.1002/chem.202400582. Epub 2024 Apr 10.
8
Unveiling the Dynamic Self-Assembly of a Recombinant Dragline-Silk-Mimicking Protein.
Biomacromolecules. 2024 Mar 11;25(3):1759-1774. doi: 10.1021/acs.biomac.3c01239. Epub 2024 Feb 11.
9
Protein-based nanoparticles for therapeutic nucleic acid delivery.
Biomaterials. 2024 Mar;305:122464. doi: 10.1016/j.biomaterials.2023.122464. Epub 2024 Jan 2.
10
Inducing an LCST in hydrophilic polysaccharides via engineered macromolecular hydrophobicity.
Sci Rep. 2023 Sep 9;13(1):14896. doi: 10.1038/s41598-023-41947-z.

本文引用的文献

2
Optically transparent recombinant silk-elastinlike protein polymer films.
J Phys Chem B. 2011 Feb 24;115(7):1608-15. doi: 10.1021/jp109764f. Epub 2011 Feb 1.
3
Nanomechanical stimulus accelerates and directs the self-assembly of silk-elastin-like nanofibers.
J Am Chem Soc. 2011 Feb 16;133(6):1745-7. doi: 10.1021/ja110191f. Epub 2011 Jan 19.
5
Complete recombinant silk-elastinlike protein-based tissue scaffold.
Biomacromolecules. 2010 Dec 13;11(12):3219-27. doi: 10.1021/bm100469w. Epub 2010 Nov 8.
6
Biomaterials from ultrasonication-induced silk fibroin-hyaluronic acid hydrogels.
Biomacromolecules. 2010 Nov 8;11(11):3178-88. doi: 10.1021/bm1010504. Epub 2010 Oct 13.
7
Biomaterials derived from silk-tropoelastin protein systems.
Biomaterials. 2010 Nov;31(32):8121-31. doi: 10.1016/j.biomaterials.2010.07.044. Epub 2010 Aug 1.
8
New opportunities for an ancient material.
Science. 2010 Jul 30;329(5991):528-31. doi: 10.1126/science.1188936.
9
Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber.
Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14059-63. doi: 10.1073/pnas.1003366107. Epub 2010 Jul 26.
10
Elastic-contractile model proteins: Physical chemistry, protein function and drug design and delivery.
Adv Drug Deliv Rev. 2010 Dec 30;62(15):1404-55. doi: 10.1016/j.addr.2010.07.001. Epub 2010 Jul 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验