Włodarczyk-Biegun Małgorzata K, Farbod Kambiz, Werten Marc W T, Slingerland Cornelis J, de Wolf Frits A, van den Beucken Jeroen J J P, Leeuwenburgh Sander C G, Cohen Stuart Martien A, Kamperman Marleen
Physical Chemistry and Soft Matter, Wageningen University & Research, Wageningen, The Netherlands.
Department of Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands.
PLoS One. 2016 May 25;11(5):e0155625. doi: 10.1371/journal.pone.0155625. eCollection 2016.
Artificial 3-dimensional (3D) cell culture systems, which mimic the extracellular matrix (ECM), hold great potential as models to study cellular processes under controlled conditions. The natural ECM is a 3D structure composed of a fibrous hydrogel that provides both mechanical and biochemical cues to instruct cell behavior. Here we present an ECM-mimicking genetically engineered protein-based hydrogel as a 3D cell culture system that combines several key features: (1) Mild and straightforward encapsulation meters (1) ease of ut I am not so sure.encapsulation of the cells, without the need of an external crosslinker. (2) Supramolecular assembly resulting in a fibrous architecture that recapitulates some of the unique mechanical characteristics of the ECM, i.e. strain-stiffening and self-healing behavior. (3) A modular approach allowing controlled incorporation of the biochemical cue density (integrin binding RGD domains). We tested the gels by encapsulating MG-63 osteoblastic cells and found that encapsulated cells not only respond to higher RGD density, but also to overall gel concentration. Cells in 1% and 2% (weight fraction) protein gels showed spreading and proliferation, provided a relative RGD density of at least 50%. In contrast, in 4% gels very little spreading and proliferation occurred, even for a relative RGD density of 100%. The independent control over both mechanical and biochemical cues obtained in this modular approach renders our hydrogels suitable to study cellular responses under highly defined conditions.
模拟细胞外基质(ECM)的人工三维(3D)细胞培养系统,作为在可控条件下研究细胞过程的模型具有巨大潜力。天然ECM是一种由纤维状水凝胶组成的三维结构,它提供机械和生化信号来指导细胞行为。在此,我们展示一种基于基因工程蛋白的ECM模拟水凝胶作为3D细胞培养系统,该系统具有几个关键特性:(1)温和且直接的细胞包封方法(1)易于细胞包封,无需外部交联剂。(2)超分子组装形成纤维结构,重现了ECM的一些独特机械特性,即应变硬化和自愈行为。(3)一种模块化方法,允许可控地纳入生化信号密度(整合素结合RGD结构域)。我们通过包封MG - 63成骨细胞来测试这些水凝胶,发现包封的细胞不仅对更高的RGD密度有反应,而且对总体凝胶浓度也有反应。在1%和2%(重量分数)的蛋白凝胶中的细胞表现出铺展和增殖,条件是相对RGD密度至少为50%。相比之下,在4%的凝胶中,即使相对RGD密度为100%,铺展和增殖也很少发生。通过这种模块化方法实现的对机械和生化信号的独立控制,使我们的水凝胶适合在高度明确的条件下研究细胞反应。