Suppr超能文献

桥中心度:一种理解共病的网络方法。

Bridge Centrality: A Network Approach to Understanding Comorbidity.

机构信息

Department of Psychology, Harvard University.

Department of Psychology, University of Waterloo.

出版信息

Multivariate Behav Res. 2021 Mar-Apr;56(2):353-367. doi: 10.1080/00273171.2019.1614898. Epub 2019 Jun 10.

Abstract

Recently, researchers in clinical psychology have endeavored to create network models of the relationships between symptoms, both within and across mental disorders. Symptoms that connect two mental disorders are called "bridge symptoms." Unfortunately, no formal quantitative methods for identifying these bridge symptoms exist. Accordingly, we developed four network statistics to identify bridge symptoms: , , and . These statistics are nonspecific to the type of network estimated, making them potentially useful in individual-level psychometric networks, group-level psychometric networks, and networks outside the field of psychopathology such as social networks. We first tested the fidelity of our statistics in predicting bridge nodes in a series of simulations. Averaged across all conditions, the statistics achieved a sensitivity of 92.7% and a specificity of 84.9%. By simulating datasets of varying sample sizes, we tested the robustness of our statistics, confirming their suitability for network psychometrics. Furthermore, we simulated the contagion of one mental disorder to another, showing that deactivating bridge nodes prevents the spread of comorbidity (i.e., one disorder activating another). Eliminating nodes based on bridge statistics was more effective than eliminating nodes high on traditional centrality statistics in preventing comorbidity. Finally, we applied our algorithms to 18 group-level empirical comorbidity networks from published studies and discussed the implications of this analysis.

摘要

最近,临床心理学领域的研究人员致力于构建症状之间的关系网络模型,包括在单一精神障碍内和跨多种精神障碍之间的关系。连接两种精神障碍的症状被称为“桥梁症状”。然而,目前还没有正式的定量方法可以识别这些桥梁症状。因此,我们开发了四种网络统计指标来识别桥梁症状:,,和。这些统计指标与所估计的网络类型无关,因此在个体水平的心理测量网络、群体水平的心理测量网络以及精神病理学领域之外的网络(如社交网络)中可能具有潜在的应用价值。我们首先在一系列模拟中测试了我们的统计指标识别桥梁节点的准确性。在所有条件下平均,这些统计指标的灵敏度为 92.7%,特异性为 84.9%。通过模拟不同样本大小的数据集,我们测试了我们的统计指标的稳健性,证实了它们适用于网络心理测量学。此外,我们模拟了一种精神障碍向另一种精神障碍的传播,结果表明,消除桥梁节点可以防止共病(即一种障碍激活另一种障碍)的发生。基于桥梁统计指标消除节点比基于传统中心性统计指标消除节点更能有效地预防共病。最后,我们将我们的算法应用于 18 个来自已发表研究的群体水平实证共病网络,并讨论了这一分析的意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验