Suppr超能文献

精神病理学症状网络中心度测量的问题:为什么网络心理计量学无法逃避心理计量理论。

Problems with Centrality Measures in Psychopathology Symptom Networks: Why Network Psychometrics Cannot Escape Psychometric Theory.

机构信息

Department of Psychology, Penn State University.

Department of Psychology, University of Pittsburgh.

出版信息

Multivariate Behav Res. 2021 Mar-Apr;56(2):199-223. doi: 10.1080/00273171.2019.1640103. Epub 2019 Aug 12.

Abstract

Understanding patterns of symptom co-occurrence is one of the most difficult challenges in psychopathology research. Do symptoms co-occur because of a latent factor, or might they directly and causally influence one another? Motivated by such questions, there has been a surge of interest in network analyses that emphasize the putatively direct role symptoms play in influencing each other. In this critical paper, we highlight conceptual and statistical problems with using centrality measures in cross-sectional networks. In particular, common network analyses assume that there are no unmodeled latent variables that confound symptom co-occurrence. The traditions of clinical taxonomy and test development in psychometric theory, however, greatly increase the possibility that latent variables exist in symptom data. In simulations that include latent variables, we demonstrate that closeness and betweenness are vulnerable to spurious covariance among symptoms that connect subgraphs (e.g., diagnoses). We further show that strength is redundant with factor loading in several cases. Finally, if a symptom reflects multiple latent causes, centrality metrics reflect a weighted combination, undermining their interpretability in empirical data. Our results suggest that it is essential for network psychometric approaches to examine the evidence for latent variables prior to analyzing or interpreting patterns at the symptom level. Failing to do so risks identifying spurious relationships or failing to detect causally important effects. Altogether, we argue that centrality measures do not provide solid ground for understanding the structure of psychopathology when latent confounding exists.

摘要

理解症状共现模式是精神病理学研究中最具挑战性的难题之一。症状是由于潜在因素共同出现,还是它们可能直接且因果地相互影响?出于此类问题的考虑,人们对强调症状之间相互作用的直接作用的网络分析产生了浓厚的兴趣。在这篇重要论文中,我们强调了在横断面网络中使用中心度测量存在的概念和统计问题。特别是,常见的网络分析假设不存在混淆症状共现的未建模潜在变量。然而,临床分类学和心理计量理论中的测试开发传统极大地增加了症状数据中存在潜在变量的可能性。在包括潜在变量的模拟中,我们证明了接近度和中介度容易受到连接子图(例如,诊断)的症状之间虚假协方差的影响。我们进一步表明,在几种情况下,强度与因子负荷冗余。最后,如果一个症状反映了多个潜在原因,中心度指标反映了加权组合,从而破坏了它们在实证数据中的可解释性。我们的研究结果表明,在分析或解释症状水平的模式之前,网络心理计量学方法必须检查潜在变量的证据,这一点至关重要。否则,就有可能识别出虚假关系或未能检测到因果关系重要的影响。总之,我们认为,当存在潜在混杂因素时,中心度测量并不能为理解精神病理学结构提供坚实的基础。

相似文献

1
Problems with Centrality Measures in Psychopathology Symptom Networks: Why Network Psychometrics Cannot Escape Psychometric Theory.
Multivariate Behav Res. 2021 Mar-Apr;56(2):199-223. doi: 10.1080/00273171.2019.1640103. Epub 2019 Aug 12.
3
Bridge Centrality: A Network Approach to Understanding Comorbidity.
Multivariate Behav Res. 2021 Mar-Apr;56(2):353-367. doi: 10.1080/00273171.2019.1614898. Epub 2019 Jun 10.
4
Comorbidity: a network perspective.
Behav Brain Sci. 2010 Jun;33(2-3):137-50; discussion 150-93. doi: 10.1017/S0140525X09991567.
5
A methodology and theoretical taxonomy for centrality measures: What are the best centrality indicators for student networks?
PLoS One. 2020 Dec 30;15(12):e0244377. doi: 10.1371/journal.pone.0244377. eCollection 2020.
6
Generalized Network Psychometrics: Combining Network and Latent Variable Models.
Psychometrika. 2017 Dec;82(4):904-927. doi: 10.1007/s11336-017-9557-x. Epub 2017 Mar 13.
7
Network-based methods for psychometric data of eating disorders: A systematic review.
PLoS One. 2022 Oct 31;17(10):e0276341. doi: 10.1371/journal.pone.0276341. eCollection 2022.
8
Kinds versus continua: a review of psychometric approaches to uncover the structure of psychiatric constructs.
Psychol Med. 2016 Jun;46(8):1567-79. doi: 10.1017/S0033291715001944. Epub 2016 Mar 21.
9
What do centrality measures measure in psychological networks?
J Abnorm Psychol. 2019 Nov;128(8):892-903. doi: 10.1037/abn0000446. Epub 2019 Jul 18.
10
ConNEcT: A Novel Network Approach for Investigating the Co-occurrence of Binary Psychopathological Symptoms Over Time.
Psychometrika. 2022 Mar;87(1):107-132. doi: 10.1007/s11336-021-09765-2. Epub 2021 Jun 1.

引用本文的文献

1
Exploring the multidimensional symptom experience in patients with inflammatory bowel disease-a contemporaneous network analysis.
Front Med (Lausanne). 2025 Aug 6;12:1631207. doi: 10.3389/fmed.2025.1631207. eCollection 2025.
2
Identifying the Core Symptoms in Chinese Patients of Chronic Obstructive Pulmonary Disease: A Contemporaneous Symptom Network Analysis.
Int J Chron Obstruct Pulmon Dis. 2025 Jul 22;20:2569-2579. doi: 10.2147/COPD.S511879. eCollection 2025.
5
Exploring network relations between healthcare access and utilisation in individuals with rare diseases.
Public Health Pract (Oxf). 2025 Feb 13;9:100593. doi: 10.1016/j.puhip.2025.100593. eCollection 2025 Jun.
6
Network psychometrics and the network approach to posttraumatic stress disorder: A conceptual and methodological overview.
J Trauma Stress. 2025 Jun;38(3):363-375. doi: 10.1002/jts.23135. Epub 2025 Mar 21.
8
Revised network loadings.
Behav Res Methods. 2025 Mar 14;57(4):114. doi: 10.3758/s13428-025-02640-3.

本文引用的文献

1
Criteria Definitions and Network Relations: The Importance of Criterion Thresholds.
Clin Psychol Sci. 2018;6(4):506-516. doi: 10.1177/2167702617747657. Epub 2017 Dec 28.
4
A tutorial on regularized partial correlation networks.
Psychol Methods. 2018 Dec;23(4):617-634. doi: 10.1037/met0000167. Epub 2018 Mar 29.
5
Mapping network connectivity among symptoms of social anxiety and comorbid depression in people with social anxiety disorder.
J Affect Disord. 2018 Mar 1;228:75-82. doi: 10.1016/j.jad.2017.12.003. Epub 2017 Dec 6.
6
The centrality of DSM and non-DSM depressive symptoms in Han Chinese women with major depression.
J Affect Disord. 2018 Feb;227:739-744. doi: 10.1016/j.jad.2017.11.032. Epub 2017 Nov 10.
7
An Introduction to Network Psychometrics: Relating Ising Network Models to Item Response Theory Models.
Multivariate Behav Res. 2018 Jan-Feb;53(1):15-35. doi: 10.1080/00273171.2017.1379379. Epub 2017 Nov 7.
8
Evidence that psychopathology symptom networks have limited replicability.
J Abnorm Psychol. 2017 Oct;126(7):969-988. doi: 10.1037/abn0000276.
9
Moving Forward: Challenges and Directions for Psychopathological Network Theory and Methodology.
Perspect Psychol Sci. 2017 Nov;12(6):999-1020. doi: 10.1177/1745691617705892. Epub 2017 Sep 5.
10
Estimating psychopathological networks: Be careful what you wish for.
PLoS One. 2017 Jun 23;12(6):e0179891. doi: 10.1371/journal.pone.0179891. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验