Department of Chemical Engineering, Monash University, Clayton, VIC, 3800, Australia.
Department of Mechanical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia.
Nat Commun. 2019 Jun 11;10(1):2490. doi: 10.1038/s41467-019-10420-9.
Biological fluoride ion channels are sub-1-nanometer protein pores with ultrahigh F conductivity and selectivity over other halogen ions. Developing synthetic F channels with biological-level selectivity is highly desirable for ion separations such as water defluoridation, but it remains a great challenge. Here we report synthetic F channels fabricated from zirconium-based metal-organic frameworks (MOFs), UiO-66-X (X = H, NH, and N(CH)). These MOFs are comprised of nanometer-sized cavities connected by sub-1-nanometer-sized windows and have specific F binding sites along the channels, sharing some features of biological F channels. UiO-66-X channels consistently show ultrahigh F conductivity up to ~10 S m, and ultrahigh F/Cl selectivity, from ~13 to ~240. Molecular dynamics simulations reveal that the ultrahigh F conductivity and selectivity can be ascribed mainly to the high F concentration in the UiO-66 channels, arising from specific interactions between F ions and F binding sites in the MOF channels.
生物氟离子通道是亚 1 纳米级的蛋白质孔道,具有超高的氟离子传导率和对其他卤族离子的选择性。开发具有生物级选择性的合成氟离子通道对于氟水去除等离子分离非常理想,但这仍然是一个巨大的挑战。在这里,我们报告了由锆基金属有机骨架(MOF)UiO-66-X(X = H、NH 和 N(CH))制造的合成氟离子通道。这些 MOF 由纳米级空腔通过亚 1 纳米级窗口连接而成,在通道上具有特定的氟结合位点,与生物氟通道具有一些共同的特征。UiO-66-X 通道始终表现出超高的氟离子传导率,高达约 10 S m,以及超高的氟/氯选择性,范围从约 13 到约 240。分子动力学模拟表明,超高的氟离子传导率和选择性主要归因于 UiO-66 通道中高浓度的氟离子,这是由于氟离子与 MOF 通道中氟结合位点之间的特异性相互作用所致。