Suppr超能文献

基于量子离子相干的生物通道中高通量离子输运的物理推导。

A physical derivation of high-flux ion transport in biological channel via quantum ion coherence.

机构信息

Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China.

School of Optical‑Electrical Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.

出版信息

Nat Commun. 2024 Aug 21;15(1):7189. doi: 10.1038/s41467-024-51045-x.

Abstract

Biological ion channels usually conduct the high-flux transport of 10 ~ 10 ions·s; however, the underlying mechanism is still lacking. Here, by applying the KcsA potassium channel as a typical example, and performing multitimescale molecular dynamics simulations, we demonstrate that there is coherence of the K ions confined in biological channels, which determines transport. The coherent oscillation state of confined K ions with a nanosecond-level lifetime in the channel dominates each transport event, serving as the physical basis for the high flux of ~10 ions∙s. The coherent transfer of confined K ions only takes several picoseconds and has no perturbation effect on the ion coherence, acting as the directional key of transport. Such ion coherence is allowed by quantum mechanics. An increase in the coherence can significantly enhance the ion conductance. These findings provide a potential explanation from the perspective of coherence for the high-flux ion transport with ultralow energy consumption of biological channels.

摘要

生物离子通道通常进行 10~10 离子·s 的高通量运输;然而,其背后的机制仍然缺乏。在这里,我们以 KcsA 钾通道为例,并进行了多次分子动力学模拟,证明了被限制在生物通道中的 K 离子存在相干性,这决定了运输。通道中具有纳秒级寿命的受限 K 离子的相干振荡状态主导每个传输事件,为 ~10 离子·s 的高通量提供了物理基础。受限 K 离子的相干传递仅需几个皮秒,并且对离子相干性没有干扰作用,充当传输的定向键。这种离子相干性是由量子力学允许的。增加相干性可以显著提高离子电导率。这些发现从相干的角度为生物通道的超低能量消耗的高通量离子运输提供了潜在的解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca66/11339410/5aaa19af1760/41467_2024_51045_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验