Suppr超能文献

三维亚 1nm 纳米流控器件中通过金属-有机框架构建的超选择性单价金属离子传导。

Ultraselective Monovalent Metal Ion Conduction in a Three-Dimensional Sub-1 nm Nanofluidic Device Constructed by Metal-Organic Frameworks.

机构信息

Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia.

Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia.

出版信息

ACS Nano. 2021 Jan 26;15(1):1240-1249. doi: 10.1021/acsnano.0c08328. Epub 2020 Dec 17.

Abstract

Construction of nanofluidic devices with an ultimate ion selectivity analogue to biological ion channels has been of great interest for their versatile applications in energy harvesting and conversion, mineral extraction, and ion separation. Herein, we report a three-dimensional (3D) sub-1 nm nanofluidic device to achieve high monovalent metal ion selectivity and conductivity. The 3D nanofluidic channel is constructed by assembly of a carboxyl-functionalized metal-organic framework (MOF, UiO-66-COOH) crystals with subnanometer pores into an ethanediamine-functionalized polymer nanochannel a nanoconfined interfacial growth method. The 3D UiO-66-COOH nanofluidic channel achieves an ultrahigh K/Mg selectivity up to 1554.9, and the corresponding K conductivity is one to three orders of magnitude higher than that in bulk. Drift-diffusion experiments of the nanofluidic channel further reveal an ultrahigh charge selectivity (K/Cl) up to 112.1, as verified by the high K/Cl content ratio in UiO-66-COOH. The high metal ion selectivity is attributed to the size-exclusion, charge selectivity, and ion binding of the negatively charged MOF channels. This work will inspire the design of diverse MOF-based nanofluidic devices for ultimate ion separation and energy conversion.

摘要

构建具有类似于生物离子通道的终极离子选择性的纳米流体器件对于它们在能量收集和转换、矿物提取和离子分离等多种应用中具有重要意义。在此,我们报告了一种三维(3D)亚 1nm 纳米流体器件,以实现高单价金属离子选择性和导电性。3D 纳米流体通道是通过将具有亚纳米孔的羧基功能化金属有机骨架(MOF,UiO-66-COOH)晶体与乙二胺功能化聚合物纳米通道进行组装而构建的,采用纳米受限界面生长方法。3D UiO-66-COOH 纳米流体通道实现了超高的 K/Mg 选择性,高达 1554.9,相应的 K 电导率比体相高 1 到 3 个数量级。纳米流体通道的漂移-扩散实验进一步揭示了超高的电荷选择性(K/Cl),高达 112.1,这通过 UiO-66-COOH 中的高 K/Cl 含量比得到验证。高金属离子选择性归因于带负电荷的 MOF 通道的尺寸排除、电荷选择性和离子结合。这项工作将激发设计各种基于 MOF 的纳米流体器件,以实现最终的离子分离和能量转换。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验