1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary.
Pathol Oncol Res. 2020 Jan;26(1):23-33. doi: 10.1007/s12253-019-00677-2. Epub 2019 Jun 11.
The high-grade brain malignancy, glioblastoma multiforme (GBM), is one of the most aggressive tumours in central nervous system. The developing resistance against recent therapies and the recurrence rate of GBMs are extremely high. In spite several new ongoing trials, GBM therapies could not significantly increase the survival rate of the patients as significantly. The presence of inter- and intra-tumoral heterogeneity of GBMs arise the problem to find both the pre-existing potential resistant clones and the cellular processes which promote the adaptation mechanisms such as multidrug resistance, stem cell-ness or metabolic alterations, etc. In our work, the in situ metabolic heterogeneity of high-grade human glioblastoma cases were analysed by immunohistochemistry using tissue-microarray. The potential importance of the detected metabolic heterogeneity was tested in three glioma cell lines (grade III-IV) using protein expression analyses (Western blot and WES Simple) and therapeutic drug (temozolomide), metabolic inhibitor treatments (including glutaminase inhibitor) to compare the effects of rapamycin (RAPA) and glutaminase inhibitor combinations in vitro (Alamar Blue and SRB tests). The importance of individual differences and metabolic alterations were observed in mono-therapeutic failures, especially the enhanced Rictor expressions after different mono-treatments in correlation to lower sensitivity (temozolomide, doxycycline, etomoxir, BPTES). RAPA combinations with other metabolic inhibitors were the best strategies except for RAPA+glutaminase inhibitor. These observations underline the importance of multi-targeting metabolic pathways. Finally, our data suggest that the detected metabolic heterogeneity (the high mTORC2 complex activity, enhanced expression of Rictor, p-Akt, p-S6, CPT1A, and LDHA enzymes in glioma cases) and the microenvironmental or treatment induced metabolic shift can be potential targets in combination therapy. Therefore, it should be considered to map tissue heterogeneity and alterations with several cellular metabolism markers in biopsy materials after applying recently available or new treatments.
高级脑恶性肿瘤,多形性胶质母细胞瘤(GBM),是中枢神经系统中最具侵袭性的肿瘤之一。最近的治疗方法发展出的耐药性和 GBM 的复发率都极高。尽管有几项新的临床试验正在进行,但 GBM 治疗方法并没有显著提高患者的生存率。GBM 存在的肿瘤内和肿瘤间异质性,导致了寻找潜在的耐药克隆和促进适应机制(如多药耐药、干细胞特性或代谢改变等)的问题。在我们的工作中,通过使用组织微阵列的免疫组织化学分析,研究了高级别人类 GBM 病例的原位代谢异质性。通过蛋白表达分析(Western blot 和 WES Simple)和治疗药物(替莫唑胺)、代谢抑制剂(包括谷氨酰胺酶抑制剂)在三种神经胶质瘤细胞系(III-IV 级)中的检测,测试了所检测到的代谢异质性的潜在重要性,以比较雷帕霉素(RAPA)和谷氨酰胺酶抑制剂组合在体外的治疗效果(Alamar Blue 和 SRB 试验)。在单药治疗失败中观察到个体差异和代谢改变的重要性,特别是在不同单药治疗后 Rictor 表达增强与敏感性降低(替莫唑胺、强力霉素、etomoxir、BPTES)相关。除了 RAPA+谷氨酰胺酶抑制剂外,RAPA 与其他代谢抑制剂的联合是最佳策略。这些观察结果强调了靶向代谢途径的重要性。最后,我们的数据表明,所检测到的代谢异质性(高 mTORC2 复合物活性、Rictor、p-Akt、p-S6、CPT1A 和 LDHA 酶在胶质瘤病例中的表达增强)以及微环境或治疗诱导的代谢变化可能是联合治疗的潜在靶点。因此,在应用最近可用或新的治疗方法后,应考虑在活检材料中绘制组织异质性和改变,以及使用几种细胞代谢标志物。