Suppr超能文献

易于合成调控树枝状纤维纳米二氧化硅的尺寸、织构性质和纤维密度,应用于催化和 CO 捕获。

Facile synthesis to tune size, textural properties and fiber density of dendritic fibrous nanosilica for applications in catalysis and CO capture.

机构信息

Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai, India.

出版信息

Nat Protoc. 2019 Jul;14(7):2177-2204. doi: 10.1038/s41596-019-0177-z. Epub 2019 Jun 12.

Abstract

Morphology-controlled nanomaterials such as silica play a critical role in the development of technologies for use in the fields of energy, environment (water and air pollution) and health. Since the discovery of Stöber's silica, followed by the discovery of mesoporous silica materials (MSNs) such as MCM-41 and SBA-15, a surge in the design and synthesis of nanosilica with various sizes, shapes, morphologies and textural properties (surface area, pore size and pore volume) has occurred. Dendritic fibrous nanosilica (DFNS; also known as KCC-1) is one of the recent discoveries in morphology-controlled nanomaterials. DFNS shows exceptional performance in large numbers of fields, including catalysis, gas capture, solar energy harvest, energy storage, sensors and biomedical applications. This material possesses a unique fibrous morphology, unlike the tubular porous structure of various conventional silica materials. It has a high surface area to volume ratio, with improved accessibility to the internal surface, tunable pore size and pore volume, controllable particle size and, importantly, improved stability. However, synthesis of DFNS with controllable size, textural properties and fiber density is still tricky because of several of the steps involved. This protocol provides a comprehensive step-wise description of DFNS synthesis and advice regarding how to control size, surface area, pore size, pore volume and fiber density. We also provide details of how to apply DFNS in catalysis and CO capture. Detailed characterization protocols for these materials using scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption and thermal gravimetric analysis (TGA) studies are also provided.

摘要

形态控制纳米材料(如二氧化硅)在能源、环境(水和空气污染)和健康等领域的技术发展中起着至关重要的作用。自 Stöber 二氧化硅的发现,以及介孔二氧化硅材料(如 MCM-41 和 SBA-15)的发现以来,各种尺寸、形状、形态和结构特性(比表面积、孔径和孔体积)的纳米二氧化硅的设计和合成出现了激增。树枝状纤维状纳米二氧化硅(DFNS;也称为 KCC-1)是形态控制纳米材料中的最新发现之一。DFNS 在许多领域表现出非凡的性能,包括催化、气体捕获、太阳能收集、能量存储、传感器和生物医学应用。与各种传统二氧化硅材料的管状多孔结构不同,这种材料具有独特的纤维形态。它具有高的表面积与体积比,可改善对内部表面的可及性、可调孔径和孔体积、可控的粒径,重要的是,提高了稳定性。然而,由于涉及到的几个步骤,DFNS 的可控尺寸、结构特性和纤维密度的合成仍然具有挑战性。本方案提供了 DFNS 合成的全面逐步描述,并提供了关于如何控制尺寸、比表面积、孔径、孔体积和纤维密度的建议。我们还详细介绍了如何将 DFNS 应用于催化和 CO 捕获。还提供了使用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、氮气吸附和热重分析(TGA)研究对这些材料进行详细表征的方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验