Department of Applied Physics and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612AZ Eindhoven, The Netherlands.
Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain.
ACS Appl Mater Interfaces. 2022 Aug 24;14(33):37345-37355. doi: 10.1021/acsami.2c06975. Epub 2022 Aug 12.
Nanoparticles represent a promising class of material for nanomedicine and molecular biosensing. The formation of a protein corona due to nonspecific particle-protein interactions is a determining factor for the biological fate of nanoparticles in vivo and strongly impacts the performance of nanoparticles when used as biosensors. Nonspecific interactions are usually highly heterogeneous, yet little is known about the heterogeneity of the protein corona that may lead to inter- and intraparticle differences in composition and protein distribution. Here, we present a super-resolution microscopic approach to study the protein corona on single silica nanoparticles and subsequent cellular interactions using multicolor stimulated emission depletion (STED) microscopy. We demonstrate that STED resolves structural features of protein corona on single particles including the distribution on the particle surface and the degree of protein internalization in porous particles. Using multicolor measurements of multiple labeled protein species, we determine the composition of the protein corona at the single-particle level. We quantify particle-to-particle differences in the composition and find that the composition is considerably influenced by the particle geometry. In a subsequent cellular uptake measurement, we demonstrate multicolor STED of protein corona on single particles internalized by cells. Our study shows that STED microscopy opens the window toward mechanistic understanding of protein coronas and aids in the rational design of nanoparticles as nanomedicines and biosensors.
纳米粒子是一种很有前途的纳米医学和分子生物传感材料。由于非特异性的粒子-蛋白质相互作用而形成的蛋白质冠是纳米粒子在体内的生物命运的决定因素,并强烈影响纳米粒子作为生物传感器的性能。非特异性相互作用通常是高度异质的,但对于可能导致组成和蛋白质分布的粒子内和粒子间差异的蛋白质冠的异质性知之甚少。在这里,我们提出了一种超分辨率显微镜方法来研究单二氧化硅纳米粒子上的蛋白质冠,以及使用多色受激发射损耗(STED)显微镜进行随后的细胞相互作用。我们证明 STED 可以解析蛋白质冠在单粒子上的结构特征,包括在粒子表面的分布和多孔粒子中蛋白质内化的程度。使用多种标记的蛋白质的多色测量,我们确定了单粒子水平上的蛋白质冠的组成。我们量化了粒子间组成的差异,并发现组成受到粒子几何形状的显著影响。在随后的细胞摄取测量中,我们证明了细胞内吞的单粒子上的蛋白质冠的多色 STED。我们的研究表明,STED 显微镜为理解蛋白质冠的机制提供了窗口,并有助于作为纳米医学和生物传感器的纳米粒子的合理设计。