Department of Neurology, San Gerardo Hospital, Laboratory of Neurobiology, Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Via Pergolesi, 33, 20900, Monza, MB, Italy.
Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
Neurol Sci. 2019 Oct;40(10):2155-2161. doi: 10.1007/s10072-019-03968-3. Epub 2019 Jun 12.
To generate and validate algorithms for the identification of individuals with dementia in the community setting, by the interrogation of administrative records, an inexpensive and already available source of data.
We collected and anonymized information on demented individuals 65 years of age or older from ten general practitioners (GPs) in the district of Brianza (Northern Italy) and compared this with the administrative data of the local health protection agency (Agenzia per la Tutela della Salute). Indicators of the disease in the administrative database (diagnosis of dementia in the hospital discharge records; use of cholinesterase inhibitors/memantine; neuropsychological tests; brain CT/MRI; outpatient neurological visits) were used separately and in different combinations to generate algorithms for the detection of patients with dementia.
When used individually, indicators of dementia showed good specificity, but low sensitivity. By their combination, we generated different algorithms: I-therapy with ChEI/memantine or diagnosis of dementia at discharge or neuropsychological tests (specificity 97.9%, sensitivity 52.5%); II-therapy with ChEI/memantine or diagnosis of dementia at discharge or neuropsychological tests or brain CT/MRI or neurological visit (sensitivity 90.8%, specificity 70.6%); III-therapy with ChEI/memantine or diagnosis of dementia at discharge or neuropsychological tests or brain CT/MRIMRI and neurological visit (specificity 89.3%, sensitivity 73.3%).
These results show that algorithms obtained from administrative data are not sufficiently accurate in classifying patients with dementia, whichever combination of variables is used for the identification of the disease. Studies in large patient cohorts are needed to develop further strategies for identifying patients with dementia in the community setting.
通过查询行政记录(一种廉价且已有的数据来源),为社区环境中痴呆症个体的识别生成并验证算法。
我们从意大利北部 Brianza 区的 10 位全科医生(GP)处收集并匿名化了 65 岁及以上的痴呆症个体的信息,并将其与当地卫生保护机构(Agenzia per la Tutela della Salute)的行政数据进行了比较。行政数据库中的疾病指标(住院记录中的痴呆症诊断;胆碱酯酶抑制剂/美金刚的使用;神经心理学测试;脑 CT/MRI;门诊神经科就诊)分别单独和组合使用,以生成用于检测痴呆症患者的算法。
单独使用时,痴呆症的指标具有良好的特异性,但敏感性较低。通过组合使用,我们生成了不同的算法:I-疗法,使用胆碱酯酶抑制剂/美金刚或出院时的痴呆症诊断或神经心理学测试(特异性 97.9%,敏感性 52.5%);II-疗法,使用胆碱酯酶抑制剂/美金刚或出院时的痴呆症诊断或神经心理学测试或脑 CT/MRI 或神经科就诊(敏感性 90.8%,特异性 70.6%);III-疗法,使用胆碱酯酶抑制剂/美金刚或出院时的痴呆症诊断或神经心理学测试或脑 CT/MRI 和神经科就诊(特异性 89.3%,敏感性 73.3%)。
无论使用哪种变量组合来识别疾病,从行政数据中获得的算法在对痴呆症患者进行分类时都不够准确。需要对更大的患者队列进行研究,以制定进一步的策略来识别社区环境中的痴呆症患者。