Roza Carolina, Campos-Sandoval José A, Gómez-García María C, Peñalver Ana, Márquez Javier
Departamento de Biología de Sistemas, Edificio de Medicina Universidad de Alcalá, Alcalá de Henares, Spain.
Laboratorio de Química de Proteínas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Campus de Teatinos, Málaga, Spain.
Front Mol Neurosci. 2019 May 28;12:138. doi: 10.3389/fnmol.2019.00138. eCollection 2019.
Signaling through bioactive lipids regulates nervous system development and functions. Lysophosphatidic acid (LPA), a membrane-derived lipid mediator particularly enriched in brain, is able to induce many responses in neurons and glial cells by affecting key processes like synaptic plasticity, neurogenesis, differentiation and proliferation. Early studies noted sustained elevations of neuronal intracellular calcium, a primary response to LPA exposure, suggesting functional modifications of NMDA and AMPA glutamate receptors. However, the crosstalk between LPA signaling and glutamatergic transmission has only recently been shown. For example, stimulation of presynaptic LPA receptors in hippocampal neurons regulates glutamate release from the presynaptic terminal, and excess of LPA induce seizures. Further evidence indicating a role of LPA in the modulation of neuronal transmission has been inferred from animal models with deficits on LPA receptors, mainly LPA which is the most prevalent receptor in human and mouse brain tissue. LPA null-mice exhibit cognitive and attention deficits characteristic of schizophrenia which are related with altered glutamatergic transmission and reduced neuropathic pain. Furthermore, silencing of LPA receptor in mice induced a severe down-regulation of the main glutaminase isoform (GLS) in cerebral cortex and hippocampus, along with a parallel sharp decrease on active matrix-metalloproteinase 9. The downregulation of both enzymes correlated with an altered morphology of glutamatergic pyramidal cells dendritic spines towards a less mature phenotype, indicating important implications of LPA in synaptic excitatory plasticity which may contribute to the cognitive and memory deficits shown by LPA-deficient mice. In this review, we present an updated account of current evidence pointing to important implications of LPA in the modulation of synaptic excitatory transmission.
通过生物活性脂质进行的信号传导调节神经系统的发育和功能。溶血磷脂酸(LPA)是一种特别富集于大脑的膜衍生脂质介质,能够通过影响突触可塑性、神经发生、分化和增殖等关键过程,在神经元和神经胶质细胞中诱导多种反应。早期研究指出,神经元细胞内钙持续升高是对LPA暴露的主要反应,这表明NMDA和AMPA谷氨酸受体的功能发生了改变。然而,LPA信号传导与谷氨酸能传递之间的相互作用直到最近才被发现。例如,刺激海马神经元中的突触前LPA受体可调节突触前末端的谷氨酸释放,而过量的LPA会诱发癫痫发作。从LPA受体缺陷的动物模型中推断出了更多表明LPA在调节神经元传递中起作用的证据,主要是LPA1,它是人和小鼠脑组织中最普遍的受体。LPA1基因敲除小鼠表现出精神分裂症特有的认知和注意力缺陷,这与谷氨酸能传递改变和神经性疼痛减轻有关。此外,在小鼠中沉默LPA受体可导致大脑皮层和海马体中主要谷氨酰胺酶同工型(GLS)的严重下调,同时活性基质金属蛋白酶9也会平行急剧下降。这两种酶的下调与谷氨酸能锥体细胞树突棘形态向不太成熟的表型改变相关,表明LPA在突触兴奋性可塑性中具有重要意义,这可能导致LPA缺陷小鼠出现认知和记忆缺陷。在这篇综述中,我们对目前表明LPA在调节突触兴奋性传递中具有重要意义的证据进行了更新阐述。