Pan Shuyan, Liu Liqun
College of Information Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
Plants (Basel). 2025 Jul 16;14(14):2206. doi: 10.3390/plants14142206.
To solve the issue that existing yield prediction methods do not fully capture the interaction between multiple factors, we propose a winter wheat yield prediction framework with triple cross-attention for multi-source data fusion. This framework consists of three modules: a multi-source data processing module, a multi-source feature fusion module, and a yield prediction module. The multi-source data processing module collects satellite, climate, and soil data based on the winter wheat planting range, and constructs a multi-source feature sequence set by combining statistical data. The multi-source feature fusion module first extracts deeper-level feature information based on the characteristics of different data, and then performs multi-source feature fusion through a triple cross-attention fusion mechanism. The encoder part in the production prediction module adds a graph attention mechanism, forming a dual branch with the original multi-head self-attention mechanism to ensure the capture of global dependencies while enhancing the preservation of local feature information. The decoder section generates the final predicted output. The results show that: (1) Using 2021 and 2022 as test sets, the mean absolute error of our method is 385.99 kg/hm, and the root mean squared error is 501.94 kg/hm, which is lower than other methods. (2) It can be concluded that the jointing-heading stage (March to April) is the most crucial period affecting winter wheat production. (3) It is evident that our model has the ability to predict the final winter wheat yield nearly a month in advance.
为解决现有产量预测方法不能充分捕捉多因素间相互作用的问题,我们提出了一种用于多源数据融合的具有三重交叉注意力机制的冬小麦产量预测框架。该框架由三个模块组成:多源数据处理模块、多源特征融合模块和产量预测模块。多源数据处理模块基于冬小麦种植范围收集卫星、气候和土壤数据,并结合统计数据构建多源特征序列集。多源特征融合模块首先根据不同数据的特征提取更深层次的特征信息,然后通过三重交叉注意力融合机制进行多源特征融合。产量预测模块中的编码器部分添加了图注意力机制,与原始的多头自注意力机制形成双分支,以确保在增强局部特征信息保留的同时捕获全局依赖性。解码器部分生成最终的预测输出。结果表明:(1)以2021年和2022年作为测试集,我们方法的平均绝对误差为385.99kg/hm,均方根误差为501.94kg/hm,低于其他方法。(2)可以得出,拔节至抽穗期(3月至4月)是影响冬小麦产量最关键的时期。(3)显然,我们的模型有能力提前近一个月预测冬小麦最终产量。