Tao Kai, Waletich Justin R, Arredondo Felipe, Tyler Brett M
Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR, United States.
Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States.
Front Plant Sci. 2019 May 22;10:635. doi: 10.3389/fpls.2019.00635. eCollection 2019.
The bimolecular fluorescence complementation (BiFC) assay has been widely used to examine interactions between integral and peripheral proteins within putative plasma membrane (PM) microdomains. In the course of using BiFC assays to examine the co-localization of plasma membrane (PM) targeted receptor-like kinases (RLKs), such as FLS2, with PM micro-domain proteins such as remorins, we unexpectedly observed heterogeneous distribution patterns of fluorescence on the PM of leaf cortical cells. These patterns appeared to co-localize with the endoplasmic reticulum (ER) and with ER-PM contact sites, and closely resembled patterns caused by over-expression of the ER-PM tether protein Synaptotagmin1 (SYT1). Using domain swap experiments with SYT1, we inferred that non-specific dimerization between FLS2-VenusN and VenusC-StRem1.3 could create artificial ER-PM tether proteins analogous to SYT1. The same patterns of ER-PM tethering were produced when a representative set of integral membrane proteins were partnered in BiFC complexes with PM-targeted peripheral membrane proteins, including PtdIns(4)P-binding proteins. We inferred that spontaneous formation of mature fluorescent proteins caused the BiFC complexes to trap the integral membrane proteins in the ER during delivery to the PM, producing a PM-ER tether. This phenomenon could be a useful tool to deliberately manipulate ER-PM tethering or to test protein membrane localization. However, this study also highlights the risk of using the BiFC assay to study membrane protein interactions in plants, due to the possibility of alterations in cellular structures and membrane organization, or misinterpretation of protein-protein interactions. A number of published studies using this approach may therefore need to be revisited.
双分子荧光互补(BiFC)分析已被广泛用于检测假定的质膜(PM)微结构域中整合蛋白和外周蛋白之间的相互作用。在使用BiFC分析检测质膜(PM)靶向的类受体激酶(RLK)(如FLS2)与质膜微结构域蛋白(如REMORIN)的共定位过程中,我们意外地观察到叶皮层细胞质膜上荧光的异质分布模式。这些模式似乎与内质网(ER)以及内质网 - 质膜接触位点共定位,并且与内质网 - 质膜系链蛋白突触结合蛋白1(SYT1)过表达引起的模式非常相似。通过与SYT1进行结构域交换实验,我们推断FLS2 - VenusN和VenusC - StRem1.3之间的非特异性二聚化可能会产生类似于SYT1的人工内质网 - 质膜系链蛋白。当一组代表性的整合膜蛋白与质膜靶向的外周膜蛋白(包括磷脂酰肌醇 - 4 - 磷酸[PtdIns(4)P]结合蛋白)在BiFC复合物中配对时,也会产生相同的内质网 - 质膜系链模式。我们推断成熟荧光蛋白的自发形成导致BiFC复合物在将整合膜蛋白递送至质膜的过程中将其捕获在内质网中,从而产生质膜 - 内质网系链。这种现象可能是一种有用的工具,可用于故意操纵内质网 - 质膜系链或测试蛋白质的膜定位。然而,这项研究也强调了使用BiFC分析研究植物中膜蛋白相互作用的风险,因为存在细胞结构和膜组织改变或蛋白质 - 蛋白质相互作用误判的可能性。因此,许多使用这种方法发表的研究可能需要重新审视。