Suppr超能文献

通过超快瞬态吸收光谱揭示TaN整体水分解活性的起源。

Origin of the overall water splitting activity of TaN revealed by ultrafast transient absorption spectroscopy.

作者信息

Murthy Dharmapura H K, Matsuzaki Hiroyuki, Wang Zheng, Suzuki Yohichi, Hisatomi Takashi, Seki Kazuhiko, Inoue Yasunobu, Domen Kazunari, Furube Akihiro

机构信息

National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba Central 2, 1-1-1 Umezono , Tsukuba , Ibaraki 305-8568 , Japan . Email:

Centre for Energy & Environmental Science , Shinshu University , 4-17-1 Wakasato, Nagano-shi , Nagano 380-8553 , Japan.

出版信息

Chem Sci. 2019 Apr 25;10(20):5353-5362. doi: 10.1039/c9sc00217k. eCollection 2019 May 28.

Abstract

Tantalum nitride (TaN) is one of the few visible light absorbing photocatalysts capable of overall water splitting (OWS), by which the evolution of both H and O is possible. Despite favourable energetics, realizing the OWS or efficient H evolution in TaN prepared by the nitridation of tantalum oxide (TaO) or Ta foil remains a challenge even after 15 years of intensive research. Recently our group demonstrated OWS in TaN when prepared by the short time nitridation of potassium tantalate (KTaO). To obtain a mechanistic insight on the role of Ta precursor and nitridation time in realizing OWS, ultrafast dynamics of electrons (3435 nm probe) and holes (545 nm probe) is investigated using transient absorption spectroscopy. Electrons decay majorly by trapping in TaN prepared by the nitridation of TaO, which do not show OWS. However, OWS activity in TaN prepared by 0.25 hour nitridation of KTaO is particularly favoured by the virtually absent electron and hole trapping. On further increasing the nitridation time of KTaO from 0.25 to 10 hour, trapping of both electron and hole is enhanced which concurrently results in a reduction of the OWS activity. Insights from correlating the synthesis conditions-structural defects-carrier dynamics-photocatalytic activity is of importance in designing novel photocatalysts to enhance solar fuel production.

摘要

氮化钽(TaN)是少数能够实现全分解水(OWS)的可见光吸收光催化剂之一,通过这种催化剂可以实现氢气和氧气的析出。尽管具有有利的能量学性质,但即使经过15年的深入研究,通过氧化钽(TaO)或钽箔氮化制备的TaN中实现OWS或高效析氢仍然是一个挑战。最近,我们的研究小组证明了通过钽酸钾(KTaO)短时间氮化制备的TaN具有OWS性能。为了深入了解Ta前驱体和氮化时间在实现OWS中的作用,我们使用瞬态吸收光谱研究了电子(3435nm探针)和空穴(545nm探针)的超快动力学。在通过TaO氮化制备的TaN中,电子主要通过捕获而衰减,这种TaN不显示OWS性能。然而,通过KTaO 0.25小时氮化制备的TaN中的OWS活性特别受到几乎不存在的电子和空穴捕获的青睐。当将KTaO的氮化时间从0.25小时进一步增加到10小时时,电子和空穴的捕获都增强了,这同时导致OWS活性降低。将合成条件-结构缺陷-载流子动力学-光催化活性相关联所获得的见解对于设计新型光催化剂以提高太阳能燃料生产具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1a2/6540954/a39eec134766/c9sc00217k-f1.jpg

相似文献

1
Origin of the overall water splitting activity of TaN revealed by ultrafast transient absorption spectroscopy.
Chem Sci. 2019 Apr 25;10(20):5353-5362. doi: 10.1039/c9sc00217k. eCollection 2019 May 28.
2
One-pot nitridation route synthesis of SrTaON/TaN type II heterostructure with enhanced visible-light photocatalytic activity.
J Colloid Interface Sci. 2019 Oct 15;554:74-79. doi: 10.1016/j.jcis.2019.06.097. Epub 2019 Jun 29.
6
TaN/Co(OH) composites as photocatalysts for photoelectrochemical water splitting.
Photochem Photobiol Sci. 2019 Apr 10;18(4):837-844. doi: 10.1039/c8pp00312b.
7
Enhanced water oxidation on Ta3N5 photocatalysts by modification with alkaline metal salts.
J Am Chem Soc. 2012 Dec 12;134(49):19993-6. doi: 10.1021/ja3095747. Epub 2012 Nov 30.
8
Construction of fiber-shaped silver oxide/tantalum nitride p-n heterojunctions as highly efficient visible-light-driven photocatalysts.
J Colloid Interface Sci. 2017 Oct 15;504:561-569. doi: 10.1016/j.jcis.2017.06.018. Epub 2017 Jun 7.
10
Roles of TaON and Ta(3)N(5) in the visible-Fenton-like degradation of atrazine.
J Hazard Mater. 2014 Feb 28;267:55-61. doi: 10.1016/j.jhazmat.2013.12.042. Epub 2013 Dec 30.

引用本文的文献

1
Interfacial Engineering over Pt-Calcium Ferrite/2D Carbon Nitride Nanosheet p-n Heterojunctions for Superior Photocatalytic Properties.
ACS Omega. 2024 Sep 9;9(38):40182-40203. doi: 10.1021/acsomega.4c06353. eCollection 2024 Sep 24.
2
Photoelectrocatalytic Hydrogen Generation: Current Advances in Materials and Characterization.
Glob Chall. 2024 Jul 4;8(8):2400011. doi: 10.1002/gch2.202400011. eCollection 2024 Aug.
3
Coupling photocatalytic CO reduction and CHOH oxidation for selective dimethoxymethane production.
Nat Commun. 2024 Jul 18;15(1):6047. doi: 10.1038/s41467-024-49927-1.
5
Metal nitride-based nanostructures for electrochemical and photocatalytic hydrogen production.
Sci Technol Adv Mater. 2022 Mar 14;23(1):76-119. doi: 10.1080/14686996.2022.2029686. eCollection 2022.
6

本文引用的文献

2
Highly Active GaN-Stabilized Ta N Thin-Film Photoanode for Solar Water Oxidation.
Angew Chem Int Ed Engl. 2017 Apr 18;56(17):4739-4743. doi: 10.1002/anie.201700117. Epub 2017 Mar 21.
3
Time-Resolved Spectroscopic Investigation of Charge Trapping in Carbon Nitrides Photocatalysts for Hydrogen Generation.
J Am Chem Soc. 2017 Apr 12;139(14):5216-5224. doi: 10.1021/jacs.7b01547. Epub 2017 Mar 31.
5
Zr-Doped Mesoporous TaN Microspheres for Efficient Photocatalytic Water Oxidation.
ACS Appl Mater Interfaces. 2016 Dec 28;8(51):35407-35418. doi: 10.1021/acsami.6b14230. Epub 2016 Dec 16.
6
Pristine Ta N Nanotubes: Trap-Driven High External Biasing Perspective in Semiconductor/Electrolyte Interfaces.
Chemistry. 2016 Dec 19;22(51):18501-18511. doi: 10.1002/chem.201603246. Epub 2016 Nov 10.
8
Effects of oxygen impurities and nitrogen vacancies on the surface properties of the Ta3N5 photocatalyst: a DFT study.
Phys Chem Chem Phys. 2015 Sep 21;17(35):23265-72. doi: 10.1039/c5cp03290c. Epub 2015 Aug 18.
10
Carrier dynamics of a visible-light-responsive Ta3N5 photoanode for water oxidation.
Phys Chem Chem Phys. 2015 Jan 28;17(4):2670-7. doi: 10.1039/c4cp05616g. Epub 2014 Dec 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验