Murthy Dharmapura H K, Matsuzaki Hiroyuki, Wang Zheng, Suzuki Yohichi, Hisatomi Takashi, Seki Kazuhiko, Inoue Yasunobu, Domen Kazunari, Furube Akihiro
National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba Central 2, 1-1-1 Umezono , Tsukuba , Ibaraki 305-8568 , Japan . Email:
Centre for Energy & Environmental Science , Shinshu University , 4-17-1 Wakasato, Nagano-shi , Nagano 380-8553 , Japan.
Chem Sci. 2019 Apr 25;10(20):5353-5362. doi: 10.1039/c9sc00217k. eCollection 2019 May 28.
Tantalum nitride (TaN) is one of the few visible light absorbing photocatalysts capable of overall water splitting (OWS), by which the evolution of both H and O is possible. Despite favourable energetics, realizing the OWS or efficient H evolution in TaN prepared by the nitridation of tantalum oxide (TaO) or Ta foil remains a challenge even after 15 years of intensive research. Recently our group demonstrated OWS in TaN when prepared by the short time nitridation of potassium tantalate (KTaO). To obtain a mechanistic insight on the role of Ta precursor and nitridation time in realizing OWS, ultrafast dynamics of electrons (3435 nm probe) and holes (545 nm probe) is investigated using transient absorption spectroscopy. Electrons decay majorly by trapping in TaN prepared by the nitridation of TaO, which do not show OWS. However, OWS activity in TaN prepared by 0.25 hour nitridation of KTaO is particularly favoured by the virtually absent electron and hole trapping. On further increasing the nitridation time of KTaO from 0.25 to 10 hour, trapping of both electron and hole is enhanced which concurrently results in a reduction of the OWS activity. Insights from correlating the synthesis conditions-structural defects-carrier dynamics-photocatalytic activity is of importance in designing novel photocatalysts to enhance solar fuel production.
氮化钽(TaN)是少数能够实现全分解水(OWS)的可见光吸收光催化剂之一,通过这种催化剂可以实现氢气和氧气的析出。尽管具有有利的能量学性质,但即使经过15年的深入研究,通过氧化钽(TaO)或钽箔氮化制备的TaN中实现OWS或高效析氢仍然是一个挑战。最近,我们的研究小组证明了通过钽酸钾(KTaO)短时间氮化制备的TaN具有OWS性能。为了深入了解Ta前驱体和氮化时间在实现OWS中的作用,我们使用瞬态吸收光谱研究了电子(3435nm探针)和空穴(545nm探针)的超快动力学。在通过TaO氮化制备的TaN中,电子主要通过捕获而衰减,这种TaN不显示OWS性能。然而,通过KTaO 0.25小时氮化制备的TaN中的OWS活性特别受到几乎不存在的电子和空穴捕获的青睐。当将KTaO的氮化时间从0.25小时进一步增加到10小时时,电子和空穴的捕获都增强了,这同时导致OWS活性降低。将合成条件-结构缺陷-载流子动力学-光催化活性相关联所获得的见解对于设计新型光催化剂以提高太阳能燃料生产具有重要意义。