Sweilam N H, Al-Mekhlafi S M, Baleanu D
Cairo University, Faculty of Science, Mathematics Department, 12613 Giza, Egypt.
Sana'a University, Faculty of Education, Mathematics Department, Sana'a, Yemen.
J Adv Res. 2019 Jan 19;17:125-137. doi: 10.1016/j.jare.2019.01.007. eCollection 2019 May.
The objective of this paper is to study the optimal control problem for the fractional tuberculosis (TB) infection model including the impact of diabetes and resistant strains. The governed model consists of 14 fractional-order (FO) equations. Four control variables are presented to minimize the cost of interventions. The fractional derivative is defined in the Atangana-Baleanu-Caputo (ABC) sense. New numerical schemes for simulating a FO optimal system with Mittag-Leffler kernels are presented. These schemes are based on the fundamental theorem of fractional calculus and Lagrange polynomial interpolation. We introduce a simple modification of the step size in the two-step Lagrange polynomial interpolation to obtain stability in a larger region. Moreover, necessary and sufficient conditions for the control problem are considered. Some numerical simulations are given to validate the theoretical results.
本文的目的是研究包含糖尿病和耐药菌株影响的分数阶结核病(TB)感染模型的最优控制问题。所控制的模型由14个分数阶(FO)方程组成。提出了四个控制变量以最小化干预成本。分数导数是在阿坦加纳 - 巴莱努 - 卡普托(ABC)意义下定义的。提出了用于模拟具有米塔格 - 莱夫勒核的分数阶最优系统的新数值格式。这些格式基于分数阶微积分基本定理和拉格朗日多项式插值。我们在两步拉格朗日多项式插值中对步长进行了简单修改,以在更大区域内获得稳定性。此外,还考虑了控制问题的充要条件。给出了一些数值模拟以验证理论结果。