Akkilic Ayse Nur, Sabir Zulqurnain, Raja Muhammad Asif Zahoor, Bulut Hasan
Department of Mathematics, Firat University, Elazig, Turkey.
Department of Mathematics and Statistics, Hazara University, Mansehra, Pakistan.
Eur Phys J Plus. 2022;137(3):334. doi: 10.1140/epjp/s13360-022-02525-w. Epub 2022 Mar 11.
In this study, modeling the COVID-19 pandemic via a novel fractional-order SIDARTHE (FO-SIDARTHE) differential system is presented. The purpose of this research seemed to be to show the consequences and relevance of the fractional-order (FO) COVID-19 SIDARTHE differential system, as well as FO required conditions underlying four control measures, called SI, SD, SA, and SR. The FO-SIDARTHE system incorporates eight phases of infection: susceptible (S), infected (I), diagnosed (D), ailing (A), recognized (R), threatening (T), healed (H), and extinct (E). Our objective of all these investigations is to use fractional derivatives to increase the accuracy of the SIDARTHE system. A FO-SIDARTHE system has yet to be disclosed, nor has it yet been treated using the strength of stochastic solvers. Stochastic solvers based on the Levenberg-Marquardt backpropagation methodology (L-MB) and neural networks (NNs), specifically L-MBNNs, are being used to analyze a FO-SIDARTHE problem. Three cases having varied values under the same fractional order are being presented to resolve the FO-SIDARTHE system. The statistics employed to provide numerical solutions toward the FO-SIDARTHE system are classified as obeys: 72% toward training, 18% in testing, and 10% for authorization. To establish the accuracy of such L-MBNNs utilizing Adams-Bashforth-Moulton, the numerical findings were compared with the reference solutions.
在本研究中,提出了一种通过新型分数阶SIDARTHE(FO-SIDARTHE)微分系统对COVID-19大流行进行建模的方法。本研究的目的似乎是展示分数阶(FO)COVID-19 SIDARTHE微分系统的后果和相关性,以及称为SI、SD、SA和SR的四项控制措施背后的分数阶必要条件。FO-SIDARTHE系统包含感染的八个阶段:易感(S)、感染(I)、诊断(D)、患病(A)、识别(R)、威胁(T)、治愈(H)和灭绝(E)。我们所有这些研究的目标是使用分数阶导数来提高SIDARTHE系统的准确性。尚未公开过FO-SIDARTHE系统,也尚未使用随机求解器的优势对其进行处理。基于Levenberg-Marquardt反向传播方法(L-MB)和神经网络(NN),特别是L-MBNN的随机求解器,正用于分析一个FO-SIDARTHE问题。为了解决FO-SIDARTHE系统,给出了在相同分数阶下具有不同值的三个案例。用于为FO-SIDARTHE系统提供数值解的统计数据分类如下:72%用于训练,18%用于测试,10%用于验证。为了利用Adams-Bashforth-Moulton方法确定此类L-MBNN的准确性,将数值结果与参考解进行了比较。