Suppr超能文献

一种使用阿坦加纳-巴莱努导数的新冠肺炎与肺结核合并感染的分数阶模型。

A fractional-order model for COVID-19 and tuberculosis co-infection using Atangana-Baleanu derivative.

作者信息

Omame A, Abbas M, Onyenegecha C P

机构信息

Department of Mathematics, Federal University of Technology, Owerri, Nigeria.

Department of Mathematics, Government College University Katchery Road, Lahore 54000, Pakistan and Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan.

出版信息

Chaos Solitons Fractals. 2021 Dec;153:111486. doi: 10.1016/j.chaos.2021.111486. Epub 2021 Oct 9.

Abstract

This paper considers and analyzes a fractional order model for COVID-19 and tuberculosis co-infection, using the Atangana-Baleanu derivative. The existence and uniqueness of the model solutions are established by applying the fixed point theorem. It is shown that the model is locally asymptotically stable when the reproduction number is less than one. The global stability analysis of the disease free equilibrium points is also carried out. The model was simulated using data relevant to both diseases in New Delhi, India. Fitting the model to the cumulative confirmed COVID-19 cases for New Delhi from March 1, 2021 to June 26, 2021, COVID-19 and TB contact rates and some other important parameters of the model are estimated. The numerical method used combines the two-step Lagrange polynomial and the fundamental theorem of fractional calculus and has been shown to be highly accurate and efficient, user-friendly and converges quickly to the exact solution even with a large step of discretization. Simulations of the Fractional order model revealed that reducing the risk of COVID-19 infection by latently-infected TB individuals will not only bring down the burden of COVID-19, but will also reduce the co-infection of both diseases in the population. Also, the conditions for the co-existence or elimination of both diseases from the population are established.

摘要

本文使用阿坦加纳-巴莱努导数考虑并分析了一个关于新冠肺炎和结核病合并感染的分数阶模型。通过应用不动点定理建立了模型解的存在性和唯一性。结果表明,当再生数小于1时,模型是局部渐近稳定的。还对无病平衡点进行了全局稳定性分析。使用与印度新德里这两种疾病相关的数据对该模型进行了模拟。将模型拟合到2021年3月1日至2021年6月26日新德里新冠肺炎累计确诊病例,估计了新冠肺炎与结核病的接触率以及模型的其他一些重要参数。所采用的数值方法结合了两步拉格朗日多项式和分数阶微积分基本定理,已证明该方法具有高精度和高效率、用户友好,即使在离散化步长较大的情况下也能快速收敛到精确解。分数阶模型的模拟结果表明,降低潜伏感染结核病个体感染新冠肺炎的风险不仅会减轻新冠肺炎的负担,还会减少人群中两种疾病的合并感染。此外,还确定了两种疾病在人群中共存或消除的条件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbb2/8501266/474b0163553a/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验