文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

无线传感器网络的通信协议:一项综述与比较

Communication protocols for wireless sensor networks: A survey and comparison.

作者信息

Ketshabetswe Lucia Keleadile, Zungeru Adamu Murtala, Mangwala Mmoloki, Chuma Joseph M, Sigweni Boyce

机构信息

Department of Electrical, Computer and Telecommunication Engineering, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana.

出版信息

Heliyon. 2019 May 21;5(5):e01591. doi: 10.1016/j.heliyon.2019.e01591. eCollection 2019 May.


DOI:10.1016/j.heliyon.2019.e01591
PMID:31193432
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6531673/
Abstract

Studies conducted on resource management in wireless sensor networks have identified energy efficient routing protocols as one of the energy saving mechanisms that can be used to manage the consumption of networks' available energy and extend network lifetime. Routing protocols assist in finding paths for transmission of sensed events, and they must be able to extend the lifetime of a network despite some of the limitations of sensor nodes in a network and the harsh environments in which the sensor nodes are to operate. In this paper, we survey and compare existing routing protocols in wireless sensor networks. We start by introducing the different solutions that can be used to improve the network lifetime and focus on energy efficient routing protocols as the area of the survey, in addition to network topology modeling. We also model the network regarding energy consumption, sensing and event extraction analysis in the network. Categorization of the routing protocols into homogeneous and heterogeneous was performed, for which, sub-classification into static and mobile and other behavioral patterns of the routing protocols was done. The second phase of the paper presents models and simulations of selected routing protocols and comparisons of their performances. We conclude this paper by discussing future work directions with highlights on some futuristic applications.

摘要

对无线传感器网络中的资源管理进行的研究已将节能路由协议确定为可用于管理网络可用能量消耗并延长网络寿命的节能机制之一。路由协议有助于找到传输感知事件的路径,并且尽管网络中的传感器节点存在一些限制以及传感器节点要运行的恶劣环境,但它们必须能够延长网络的寿命。在本文中,我们对无线传感器网络中现有的路由协议进行了调查和比较。我们首先介绍可用于提高网络寿命的不同解决方案,并将重点放在节能路由协议上,作为调查领域,此外还包括网络拓扑建模。我们还对网络的能量消耗、传感和事件提取分析进行建模。将路由协议分为同构和异构两类,并在此基础上进一步细分为静态和移动以及路由协议的其他行为模式。本文的第二阶段展示了所选路由协议的模型和模拟,并对它们的性能进行了比较。我们通过讨论未来的工作方向并突出一些未来应用来结束本文。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/242b/6531673/bf3741d3af49/gr31.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/242b/6531673/33c83d6071e5/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/242b/6531673/0e0545c2b03a/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/242b/6531673/9ceb97a0c80f/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/242b/6531673/61d36ebc7c16/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/242b/6531673/91b188d2f5eb/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/242b/6531673/23486ae408cd/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/242b/6531673/000803114dd0/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/242b/6531673/f04a1316d2a6/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/242b/6531673/302544b4332a/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/242b/6531673/91a6a89d82e6/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/242b/6531673/63d91d3d8130/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/242b/6531673/d4effe117410/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/242b/6531673/9743aea9dcbf/gr13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/242b/6531673/5ab394ddc2ce/gr14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/242b/6531673/66e49d96a3e5/gr15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/242b/6531673/6eaa753a12ea/gr16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/242b/6531673/4e34552c5d3b/gr17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/242b/6531673/2ce6bd3edee8/gr18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/242b/6531673/0311a41a9c39/gr19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/242b/6531673/26e8867dd252/gr21.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/242b/6531673/c9611a80de69/gr23.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/242b/6531673/a0c767b4c56c/gr25.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/242b/6531673/a5c12358c1cc/gr27.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/242b/6531673/85b61647fbc4/gr29.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/242b/6531673/bf3741d3af49/gr31.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/242b/6531673/33c83d6071e5/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/242b/6531673/0e0545c2b03a/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/242b/6531673/9ceb97a0c80f/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/242b/6531673/61d36ebc7c16/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/242b/6531673/91b188d2f5eb/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/242b/6531673/23486ae408cd/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/242b/6531673/000803114dd0/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/242b/6531673/f04a1316d2a6/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/242b/6531673/302544b4332a/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/242b/6531673/91a6a89d82e6/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/242b/6531673/63d91d3d8130/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/242b/6531673/d4effe117410/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/242b/6531673/9743aea9dcbf/gr13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/242b/6531673/5ab394ddc2ce/gr14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/242b/6531673/66e49d96a3e5/gr15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/242b/6531673/6eaa753a12ea/gr16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/242b/6531673/4e34552c5d3b/gr17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/242b/6531673/2ce6bd3edee8/gr18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/242b/6531673/0311a41a9c39/gr19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/242b/6531673/26e8867dd252/gr21.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/242b/6531673/c9611a80de69/gr23.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/242b/6531673/a0c767b4c56c/gr25.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/242b/6531673/a5c12358c1cc/gr27.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/242b/6531673/85b61647fbc4/gr29.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/242b/6531673/bf3741d3af49/gr31.jpg

相似文献

[1]
Communication protocols for wireless sensor networks: A survey and comparison.

Heliyon. 2019-5-21

[2]
A comprehensive survey of energy-aware routing protocols in wireless body area sensor networks.

J Med Syst. 2016-9

[3]
A Survey on an Energy-Efficient and Energy-Balanced Routing Protocol for Wireless Sensor Networks.

Sensors (Basel). 2017-5-10

[4]
A survey on routing protocols for large-scale wireless sensor networks.

Sensors (Basel). 2011-3-24

[5]
Real-Time QoS Routing Protocols in Wireless Multimedia Sensor Networks: Study and Analysis.

Sensors (Basel). 2015-9-2

[6]
An Efficient Data-Gathering Routing Protocol for Underwater Wireless Sensor Networks.

Sensors (Basel). 2015-11-17

[7]
Multipath routing in wireless sensor networks: survey and research challenges.

Sensors (Basel). 2012-1-9

[8]
Void Avoiding Opportunistic Routing Protocols for Underwater Wireless Sensor Networks: A Survey.

Sensors (Basel). 2022-12-6

[9]
Energy Efficient Routing Algorithm with Mobile Sink Support for Wireless Sensor Networks.

Sensors (Basel). 2019-3-27

[10]
Routing Protocols for Underwater Wireless Sensor Networks: Taxonomy, Research Challenges, Routing Strategies and Future Directions.

Sensors (Basel). 2018-5-18

引用本文的文献

[1]
Comprehensive electrical models for a wireless sensor network device.

Heliyon. 2024-11-15

[2]
Clustered Routing Using Chaotic Genetic Algorithm with Grey Wolf Optimization to Enhance Energy Efficiency in Sensor Networks.

Sensors (Basel). 2024-7-7

[3]
Energy efficient optimal deployment of industrial wireless mesh networks using transient trigonometric Harris Hawks optimizer.

Heliyon. 2024-3-27

[4]
Biosymbiotic platform for chronic long-range monitoring of biosignals in limited resource settings.

Proc Natl Acad Sci U S A. 2023-12-12

[5]
Sink Node Placement and Partial Connectivity in Wireless Sensor Networks.

Sensors (Basel). 2023-11-9

[6]
An Improved Q-Learning-Based Sensor-Scheduling Algorithm for Multi-Target Tracking.

Sensors (Basel). 2022-9-15

[7]
Survey and Comparative Study of LoRa-Enabled Simulators for Internet of Things and Wireless Sensor Networks.

Sensors (Basel). 2022-7-25

[8]
Energy-Aware QoS MAC Protocol Based on Prioritized-Data and Multi-Hop Routing for Wireless Sensor Networks.

Sensors (Basel). 2022-3-29

[9]
Improved prediction error expansion and mirroring embedded samples for enhancing reversible audio data hiding.

Heliyon. 2021-11-16

[10]
Current Trends on Green Wireless Sensor Networks.

Sensors (Basel). 2021-6-23

本文引用的文献

[1]
An energy efficient distance-aware routing algorithm with multiple mobile sinks for wireless sensor networks.

Sensors (Basel). 2014-8-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索