Liu Xiuping, Lyu Lu, Li Jiaqian, Sen Biswarup, Bai Mohan, Stajich Jason E, Collier Jackie L, Wang Guangyi
Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, China.
Department of Plant Pathology and Microbiology, University of California, Riverside, California, USA.
Microbiol Spectr. 2023 Feb 6;11(2):e0424722. doi: 10.1128/spectrum.04247-22.
Labyrinthulomycetes are a group of ubiquitous and diverse unicellular Stramenopiles and have long been known for their vital role in ocean carbon cycling. However, their ecological function from the perspective of organic matter degradation remains poorly understood. This study reports high-quality genomes of two newly isolated Labyrinthulomycetes strains, namely, sp. strain S-28 and sp. strain S-429, and provides molecular analysis of their ecological functions using comparative genomics and a biochemical assay. Our results suggest that Labyrinthulomycetes may occupy multiple ecological niches in marine ecosystems because of the significant differences in gene function among different genera. Certain strains could degrade wheat bran independently by secreting cellulase. The key glycoside hydrolase families (GH1, GH5, and GH9) related to cellulase and the functional domains of carbohydrate-active enzymes (CAZymes) were more enriched in their genomes. This group can actively participate in marine biochemical cycles as decomposers. In contrast, other strains that could not produce cellulase may thrive as "leftover scavengers" and act as a source of nutrients to the higher-trophic-level plankton. In addition, our findings emphasize the dual roles of endoglucanase, acting as both exo- and endoglucanases, in the process of cellulose degradation. Using genomic, biochemical, and phylogenetic analyses, our study provides a broader insight into the nutritional patterns and ecological functions of Labyrinthulomycetes. Unicellular heterotrophic eukaryotes are an important component of marine ecosystems. However, their ecological functions and modes of nutrition remain largely unknown. Our current understanding of marine microbial ecology is incomplete without integrating these heterotrophic microeukaryotes into the food web models. This study focuses on the unicellular fungus-like protists Labyrinthulomycetes and provides two high-quality genomes of cellulase-producing Labyrinthulomycetes. Our study uncovers the basis of their cellulase production by deciphering the results of genomic, biochemical, and phylogenetic analyses. This study instigates a further investigation of the molecular mechanism of organic matter utilization by Labyrinthulomycetes in the world's oceans.
网黏菌纲是一类广泛存在且多样的单细胞不等鞭毛类生物,长期以来因其在海洋碳循环中的重要作用而为人所知。然而,从有机物降解的角度来看,它们的生态功能仍知之甚少。本研究报告了两株新分离的网黏菌纲菌株的高质量基因组,即sp.菌株S - 28和sp.菌株S - 429,并利用比较基因组学和生化分析对它们的生态功能进行了分子分析。我们的结果表明,由于不同属之间基因功能存在显著差异,网黏菌纲可能在海洋生态系统中占据多个生态位。某些菌株可以通过分泌纤维素酶独立降解麦麸。与纤维素酶相关的关键糖苷水解酶家族(GH1、GH5和GH9)以及碳水化合物活性酶(CAZymes)的功能域在它们的基因组中更为丰富。这一类群可以作为分解者积极参与海洋生物化学循环。相比之下,其他不能产生纤维素酶的菌株可能作为“剩余物清道夫”而繁盛,并作为高营养级浮游生物的营养来源。此外,我们的研究结果强调了内切葡聚糖酶在纤维素降解过程中同时作为外切和内切葡聚糖酶的双重作用。通过基因组、生化和系统发育分析,我们的研究为网黏菌纲的营养模式和生态功能提供了更广泛的见解。单细胞异养真核生物是海洋生态系统的重要组成部分。然而,它们的生态功能和营养模式在很大程度上仍然未知。如果不将这些异养微型真核生物纳入食物网模型,我们目前对海洋微生物生态学的理解是不完整的。本研究聚焦于单细胞真菌样原生生物网黏菌纲,并提供了两个产生纤维素酶的网黏菌纲的高质量基因组。我们的研究通过解读基因组、生化和系统发育分析的结果,揭示了它们产生纤维素酶的基础。本研究促使人们进一步研究网黏菌纲在世界海洋中利用有机物的分子机制。