Universitat de Girona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain.
Universitat de Girona, Spain.
Health Informatics J. 2020 Mar;26(1):703-718. doi: 10.1177/1460458219850682. Epub 2019 Jun 13.
Tight blood glucose control reduces the risk of microvascular and macrovascular complications in patients with type 1 diabetes. However, this is very difficult due to the large intra-individual variability and other factors that affect glycaemic control. The main limiting factor to achieve strict control of glucose levels in patients on intensive insulin therapy is the risk of severe hypoglycaemia. Therefore, hypoglycaemia is the main safety problem in the treatment of type 1 diabetes, negatively affecting the quality of life of patients suffering from this disease. Decision support tools based on machine learning methods have become a viable way to enhance patient safety by anticipating adverse glycaemic events. This study proposes the application of four machine learning algorithms to tackle the problem of safety in diabetes management: (1) grammatical evolution for the mid-term continuous prediction of blood glucose levels, (2) support vector machines to predict hypoglycaemic events during postprandial periods, (3) artificial neural networks to predict hypoglycaemic episodes overnight, and (4) data mining to profile diabetes management scenarios. The proposal consists of the combination of prediction and classification capabilities of the implemented approaches. The resulting system significantly reduces the number of episodes of hypoglycaemia, improving safety and providing patients with greater confidence in decision-making.
严格的血糖控制可降低 1 型糖尿病患者微血管和大血管并发症的风险。然而,由于个体内变异性大以及其他影响血糖控制的因素,这非常困难。在强化胰岛素治疗的患者中实现严格血糖控制的主要限制因素是严重低血糖的风险。因此,低血糖是 1 型糖尿病治疗中的主要安全问题,对患有这种疾病的患者的生活质量产生负面影响。基于机器学习方法的决策支持工具已成为通过预测不良血糖事件来提高患者安全性的可行方法。本研究提出应用四种机器学习算法来解决糖尿病管理中的安全问题:(1)语法进化用于血糖水平的中期连续预测,(2)支持向量机用于预测餐后低血糖事件,(3)人工神经网络用于预测夜间低血糖发作,以及(4)数据挖掘用于分析糖尿病管理场景。该提案包括实施方法的预测和分类能力的结合。由此产生的系统可显著减少低血糖发作次数,提高安全性,并使患者对决策更有信心。