Suppr超能文献

在阿尔波特综合征小鼠模型的肾脏发育过程中,两种特定的硫脂种类失调。

Two Specific Sulfatide Species Are Dysregulated during Renal Development in a Mouse Model of Alport Syndrome.

作者信息

Gessel Megan M, Spraggins Jeffrey M, Voziyan Paul A, Abrahamson Dale R, Caprioli Richard M, Hudson Billy G

机构信息

Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.

Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232, USA.

出版信息

Lipids. 2019 Jun;54(6-7):411-418. doi: 10.1002/lipd.12171. Epub 2019 Jun 13.

Abstract

Alport syndrome is caused by mutations in collagen IV that alter the morphology of renal glomerular basement membrane. Mutations result in proteinuria, tubulointerstitial fibrosis, and renal failure but the pathogenic mechanisms are not fully understood. Using imaging mass spectrometry, we aimed to determine whether the spatial and/or temporal patterns of renal lipids are perturbed during the development of Alport syndrome in the mouse model. Our results show that most sulfatides are present at similar levels in both the wild-type (WT) and the Alport kidneys, with the exception of two specific sulfatide species, SulfoHex-Cer(d18:2/24:0) and SulfoHex-Cer(d18:2/16:0). In the Alport but not in WT kidneys, the levels of these species mirror the previously described abnormal laminin expression in Alport syndrome. The presence of these sulfatides in renal tubules but not in glomeruli suggests that this specific aberrant lipid pattern may be related to the development of tubulointerstitial fibrosis in Alport disease.

摘要

奥尔波特综合征是由IV型胶原蛋白的突变引起的,这些突变会改变肾小球基底膜的形态。突变会导致蛋白尿、肾小管间质纤维化和肾衰竭,但其致病机制尚未完全明确。我们利用成像质谱技术,旨在确定在小鼠模型中奥尔波特综合征发展过程中肾脏脂质的空间和/或时间模式是否受到干扰。我们的结果表明,除了两种特定的硫脂种类,即硫酸己糖神经酰胺(d18:2/24:0)和硫酸己糖神经酰胺(d18:2/16:0)外,大多数硫脂在野生型(WT)和奥尔波特综合征小鼠的肾脏中含量相似。在奥尔波特综合征小鼠的肾脏中,而不是野生型小鼠的肾脏中,这些硫脂的含量反映了先前描述的奥尔波特综合征中异常的层粘连蛋白表达。这些硫脂存在于肾小管而非肾小球中,这表明这种特定的异常脂质模式可能与奥尔波特病中肾小管间质纤维化的发展有关。

相似文献

1
Two Specific Sulfatide Species Are Dysregulated during Renal Development in a Mouse Model of Alport Syndrome.
Lipids. 2019 Jun;54(6-7):411-418. doi: 10.1002/lipd.12171. Epub 2019 Jun 13.
2
Laminin compensation in collagen alpha3(IV) knockout (Alport) glomeruli contributes to permeability defects.
J Am Soc Nephrol. 2007 Sep;18(9):2465-72. doi: 10.1681/ASN.2007030328. Epub 2007 Aug 15.
3
Pathogenicity of a Human Laminin 2 Mutation Revealed in Models of Alport Syndrome.
J Am Soc Nephrol. 2018 Mar;29(3):949-960. doi: 10.1681/ASN.2017090997. Epub 2017 Dec 20.
4
Dysregulated Expression of microRNA-21 and Disease-Related Genes in Human Patients and in a Mouse Model of Alport Syndrome.
Hum Gene Ther. 2019 Jul;30(7):865-881. doi: 10.1089/hum.2018.205. Epub 2019 Mar 29.
5
Hydroxypropyl-β-cyclodextrin protects from kidney disease in experimental Alport syndrome and focal segmental glomerulosclerosis.
Kidney Int. 2018 Dec;94(6):1151-1159. doi: 10.1016/j.kint.2018.06.031. Epub 2018 Oct 6.
7
Laminin-1 reexpression in Alport mouse glomerular basement membranes.
Kidney Int. 2003 Mar;63(3):826-34. doi: 10.1046/j.1523-1755.2003.00800.x.
9
Osteopontin deficiency ameliorates Alport pathology by preventing tubular metabolic deficits.
JCI Insight. 2018 Mar 22;3(6):94818. doi: 10.1172/jci.insight.94818.

引用本文的文献

1
Relationship of Sulfatides Physiological Function and Peroxisome Proliferator-Activated Receptor α.
Neurochem Res. 2023 Jul;48(7):2059-2065. doi: 10.1007/s11064-023-03895-y. Epub 2023 Mar 6.
2
The repertoire of protein-sulfatide interactions reveal distinct modes of sulfatide recognition.
Front Mol Biosci. 2022 Nov 30;9:1080161. doi: 10.3389/fmolb.2022.1080161. eCollection 2022.
3
Implications of Sphingolipid Metabolites in Kidney Diseases.
Int J Mol Sci. 2022 Apr 11;23(8):4244. doi: 10.3390/ijms23084244.

本文引用的文献

1
Diabetic nephropathy induces alterations in the glomerular and tubule lipid profiles.
J Lipid Res. 2014 Jul;55(7):1375-85. doi: 10.1194/jlr.M049189. Epub 2014 May 26.
2
MALDI imaging mass spectrometry: spatial molecular analysis to enable a new age of discovery.
J Proteomics. 2014 Jul 31;107:71-82. doi: 10.1016/j.jprot.2014.03.021. Epub 2014 Mar 29.
3
MALDI imaging mass spectrometry profiling of proteins and lipids in clear cell renal cell carcinoma.
Proteomics. 2014 Apr;14(7-8):924-35. doi: 10.1002/pmic.201300434. Epub 2014 Mar 3.
4
Imaging mass spectrometry: a new tool for pathology in a molecular age.
Proteomics Clin Appl. 2013 Dec;7(11-12):733-8. doi: 10.1002/prca.201300055.
5
MALDI imaging MS reveals candidate lipid markers of polycystic kidney disease.
J Lipid Res. 2013 Oct;54(10):2785-94. doi: 10.1194/jlr.M040014. Epub 2013 Jul 12.
6
Alport syndrome--insights from basic and clinical research.
Nat Rev Nephrol. 2013 Mar;9(3):170-8. doi: 10.1038/nrneph.2012.259. Epub 2012 Nov 20.
7
Role of sulfatide in normal and pathological cells and tissues.
J Lipid Res. 2012 Aug;53(8):1437-50. doi: 10.1194/jlr.R026682. Epub 2012 May 22.
8
Chemopreventive sphingadienes downregulate Wnt signaling via a PP2A/Akt/GSK3β pathway in colon cancer.
Carcinogenesis. 2012 Sep;33(9):1726-35. doi: 10.1093/carcin/bgs174. Epub 2012 May 11.
9
Imaging mass spectrometry analysis reveals an altered lipid distribution pattern in the tubular areas of hyper-IgA murine kidneys.
Exp Mol Pathol. 2011 Oct;91(2):614-21. doi: 10.1016/j.yexmp.2011.07.002. Epub 2011 Jul 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验