Suppr超能文献

基质辅助激光解吸电离成像质谱:实现新时代发现的空间分子分析技术

MALDI imaging mass spectrometry: spatial molecular analysis to enable a new age of discovery.

作者信息

Gessel Megan M, Norris Jeremy L, Caprioli Richard M

机构信息

National Research Resource for Imaging Mass Spectrometry, Mass Spectrometry Research Center, Vanderbilt University School of Medicine, 9160 Medical Research Building III, 465 21st Avenue South, Nashville, TN 37232-8575, United States; Department of Biochemistry, Vanderbilt University School of Medicine, 9160 Medical Research Building III, 465 21st Avenue South, Nashville, TN 37232-8575, United States.

National Research Resource for Imaging Mass Spectrometry, Mass Spectrometry Research Center, Vanderbilt University School of Medicine, 9160 Medical Research Building III, 465 21st Avenue South, Nashville, TN 37232-8575, United States; Department of Biochemistry, Vanderbilt University School of Medicine, 9160 Medical Research Building III, 465 21st Avenue South, Nashville, TN 37232-8575, United States.

出版信息

J Proteomics. 2014 Jul 31;107:71-82. doi: 10.1016/j.jprot.2014.03.021. Epub 2014 Mar 29.

Abstract

Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) combines the sensitivity and selectivity of mass spectrometry with spatial analysis to provide a new dimension for histological analyses to provide unbiased visualization of the arrangement of biomolecules in tissue. As such, MALDI IMS has the capability to become a powerful new molecular technology for the biological and clinical sciences. In this review, we briefly describe several applications of MALDI IMS covering a range of molecular weights, from drugs to proteins. Current limitations and challenges are discussed along with recent developments to address these issues. This article is part of a Special Issue entitled: 20years of Proteomics in memory of Viatliano Pallini. Guest Editors: Luca Bini, Juan J. Calvete, Natacha Turck, Denis Hochstrasser and Jean-Charles Sanchez.

摘要

基质辅助激光解吸/电离成像质谱(MALDI IMS)将质谱的灵敏度和选择性与空间分析相结合,为组织学分析提供了一个新的维度,能够无偏倚地可视化组织中生物分子的排列。因此,MALDI IMS有潜力成为生物和临床科学领域一项强大的新型分子技术。在本综述中,我们简要描述了MALDI IMS的几种应用,涵盖了从药物到蛋白质的一系列分子量范围。同时讨论了当前的局限性和挑战以及为解决这些问题的最新进展。本文是名为“纪念维亚特利亚诺·帕利尼的蛋白质组学20年”特刊的一部分。客座编辑:卢卡·比尼、胡安·J·卡尔韦特、娜塔莎·图尔克、丹尼斯·霍斯特拉斯和让-查尔斯·桑切斯。

相似文献

3
Six decades searching for meaning in the proteome.六十年探寻蛋白质组中的意义。
J Proteomics. 2014 Jul 31;107:24-30. doi: 10.1016/j.jprot.2014.03.005. Epub 2014 Mar 16.
6
A Sydney proteome story.一个悉尼蛋白质组的故事。
J Proteomics. 2014 Jul 31;107:13-23. doi: 10.1016/j.jprot.2014.04.006. Epub 2014 Apr 13.
7
From genes to function: kick-starting US HUPO.从基因到功能:启动美国人类蛋白质组组织(HUPO)
J Proteomics. 2014 Jul 31;107:144-5. doi: 10.1016/j.jprot.2014.02.026. Epub 2014 Mar 5.
8
Individualized proteomics.个性化蛋白质组学
J Proteomics. 2014 Jul 31;107:56-61. doi: 10.1016/j.jprot.2014.04.003. Epub 2014 Apr 13.
9
From target discovery to clinical trials with armed antibody products.从靶点发现到携带武装抗体产品的临床试验。
J Proteomics. 2014 Jul 31;107:50-5. doi: 10.1016/j.jprot.2014.02.034. Epub 2014 Mar 12.
10
The proteomics quantification dilemma.蛋白质组学定量难题。
J Proteomics. 2014 Jul 31;107:98-102. doi: 10.1016/j.jprot.2014.03.015. Epub 2014 Mar 26.

引用本文的文献

1
Spatial Multiplexing and Omics.空间复用与组学
Nat Rev Methods Primers. 2024;4(1). doi: 10.1038/s43586-024-00330-6. Epub 2024 Aug 1.
5
Cell-Instructive Biomaterials with Native-Like Biochemical Complexity.具有类天然生化复杂性的细胞指导性生物材料。
Annu Rev Biomed Eng. 2025 May;27(1):185-209. doi: 10.1146/annurev-bioeng-120823-020209. Epub 2025 Jan 28.
7
Mimicking and analyzing the tumor microenvironment.模拟和分析肿瘤微环境。
Cell Rep Methods. 2024 Oct 21;4(10):100866. doi: 10.1016/j.crmeth.2024.100866. Epub 2024 Sep 30.

本文引用的文献

1
The one hour yeast proteome.酵母蛋白质组的一个小时。
Mol Cell Proteomics. 2014 Jan;13(1):339-47. doi: 10.1074/mcp.M113.034769. Epub 2013 Oct 19.
5
Laser beam filtration for high spatial resolution MALDI imaging mass spectrometry.激光束过滤用于高空间分辨率 MALDI 成像质谱。
J Am Soc Mass Spectrom. 2013 Jul;24(7):1153-6. doi: 10.1007/s13361-013-0638-5. Epub 2013 May 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验