Suppr超能文献

基于单侧结构化氧化石墨烯纸的量子限制超流体驱动的湿度驱动

Quantum-Confined-Superfluidics-Enabled Moisture Actuation Based on Unilaterally Structured Graphene Oxide Papers.

作者信息

Zhang Yong-Lai, Liu Yu-Qing, Han Dong-Dong, Ma Jia-Nan, Wang Dan, Li Xian-Bin, Sun Hong-Bo

机构信息

State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China.

State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Haidian district, Beijing, 100084, China.

出版信息

Adv Mater. 2019 Aug;31(32):e1901585. doi: 10.1002/adma.201901585. Epub 2019 Jun 13.

Abstract

The strong interaction between graphene oxides (GO) and water molecules has trigged enormous research interest in developing GO-based separation films, sensors, and actuators. However, sophisticated control over the ultrafast water transmission among the GO sheets and the consequent deformation of the entire GO film is still challenging. Inspired from the natural "quantum-tunneling-fluidics-effect," here quantum-confined-superfluidics-enabled moisture actuation of GO paper by introducing periodic gratings unilaterally is reported. The folded GO nanosheets that act as quantum-confined-superfluidics channels can significantly promote water adsorption, enabling controllable and sensitive moisture actuation. Water-adsorption-induced expansion along and against the normal direction of a GO paper is investigated both theoretically and experimentally. Featuring state-of-the-art of ultrafast response (1.24 cm s ), large deformation degree, and complex and predictable deformation, the smart GO papers are used for biomimetic mini-robots including a creeping centipede and a smart leaf that can catch a living ladybug. The reported method is simple and universal for 2D materials, revealing great potential for developing graphene-based smart robots.

摘要

氧化石墨烯(GO)与水分子之间的强相互作用引发了人们对开发基于GO的分离膜、传感器和致动器的巨大研究兴趣。然而,精确控制GO片层间超快的水传输以及由此导致的整个GO膜的变形仍然具有挑战性。受自然“量子隧穿流体效应”的启发,本文报道了通过单侧引入周期性光栅实现量子限域超流体驱动的GO纸的湿度致动。充当量子限域超流体通道的折叠GO纳米片可显著促进水吸附,实现可控且灵敏的湿度致动。从理论和实验两方面研究了水吸附引起的沿GO纸法线方向和垂直于法线方向的膨胀。这种智能GO纸具有超快响应(1.24 cm/s)、大变形程度以及复杂且可预测的变形等先进特性,被用于制作仿生微型机器人,包括一只爬行的蜈蚣和一片能捕获活瓢虫的智能叶子。所报道的方法对于二维材料而言简单且通用,展现出开发基于石墨烯的智能机器人的巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验